
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

AVOIDING CATASTROPHE IN ONLINE LEARNING BY
ASKING FOR HELP

Anonymous authors
Paper under double-blind review

ABSTRACT

Most learning algorithms with formal regret guarantees assume that no mistake is
irreparable and essentially rely on trying all possible behaviors. This approach is
problematic when some mistakes are catastrophic, i.e., irreparable. We propose an
online learning problem where the goal is to minimize the chance of catastrophe.
Specifically, we assume that the payoff in each round represents the chance of avoid-
ing catastrophe that round and try to maximize the product of payoffs (the overall
chance of avoiding catastrophe) while allowing a limited number of queries to a
mentor. We first show that in general, any algorithm either constantly queries the
mentor or is nearly guaranteed to cause catastrophe. However, in settings where the
mentor policy class is learnable in the standard online model, we provide an algo-
rithm whose regret and rate of querying the mentor both approach 0 as the time hori-
zon grows. Conceptually, if a policy class is learnable in the absence of catastrophic
risk, it is learnable in the presence of catastrophic risk if the agent can ask for help.

1 INTRODUCTION

There has been mounting concern over catastrophic risk from AI, including but not limited to
autonomous weapon accidents (Abaimov & Martellini, 2020), bioterrorism (Mouton et al., 2024),
and cyberattacks on critical infrastructure (Guembe et al., 2022). See Critch & Russell (2023) and
Hendrycks et al. (2023) for taxonomies of societal-scale AI risks. In this paper, we use “catastrophe” to
refer to any kind of irreparable harm. This definition also covers smaller-scale (yet still unacceptable)
incidents such as serious medical errors (Di Nucci, 2019), crashing a robotic vehicle (Kohli & Chadha,
2020), or discriminatory sentencing (Villasenor & Foggo, 2020).

The gravity of these risks contrasts starkly with the dearth of theoretical understanding of how to
avoid them. Nearly all of learning theory explicitly or implicitly assumes that no single mistake
is too costly. We focus on online learning, where an agent repeatedly interacts with an unknown
environment and uses its observations to gradually improve its performance. Most online learning
algorithms essentially try all possible behaviors and see what works well. We do not want autonomous
weapons or surgical robots to try all possible behaviors.

More precisely, trial-and-error-style algorithms only work when catastrophe is assumed to be impos-
sible. This assumption manifests differently in different subtypes of online learning. In the standard
online learning model, the agent’s actions have no permanent effect on the environment.1 Online
reinforcement learning allows the agent’s actions to permanently affect the environment, but typically
assumes that either no action has irreversible effects (e.g., Jaksch et al. (2010)) or that the agent is
reset at the start of each “episode” (e.g., Azar et al. (2017)). One could train an agent entirely in a
controlled lab setting where the above assumptions do hold, but we argue that sufficiently general
agents will inevitably encounter novel scenarios when deployed in the real world. Machine learning
models often behave unpredictably in unfamiliar environments (see, e.g., Quionero-Candela et al.
(2009)), and we do not want AI biologists or robotic vehicles to behave unpredictably.

The goal of this paper is to understand the conditions under which it is possible to formally guarantee
avoidance of catastrophe in online learning. Certainly some conditions are necessary, because if the
agent can only learn by trying actions directly, the problem is hopeless: any untried action could

1More precisely, the input can depend on the agent’s previous actions, but the agent’s performance is always
evaluated with respect to the optimal policy on the same sequence of inputs.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

lead to paradise or disaster and the agent has no way to predict which. In the real world, however,
one needn’t learn through pure trial-and-error: one can also ask for help. We think it is critical for
high-stakes AI applications to employ a designated supervisor who can be asked for help. Examples
include a human doctor supervising AI doctors, a robotic vehicle with a human driver who can take
over in emergencies, autonomous weapons with a human operator, and many more. We hope that our
work constitutes a small step in the direction of practical safety guarantees for such applications.

1.1 OUR MODEL

We propose an online learning model of avoiding catastrophe with mentor help. On each time step,
the agent observes an input, selects an action (or queries the mentor), and obtains a payoff. Each
payoff represents the probability of avoiding catastrophe on that time step (conditioned on no prior
catastrophe). The agent’s goal is to maximize the product of payoffs, which is equal to the overall
probability of avoiding catastrophe by the chain rule of probability.

The (possibly suboptimal) mentor has a fixed policy, and when queried, the mentor illustrates their
policy’s action for the current input. We desire an agent whose regret – defined as the gap between the
mentor’s performance and the agent’s performance – approaches zero as the time horizon T grows.
In other words, with enough time, the agent should avoid catastrophe nearly as well as the mentor.
We also expect the agent to become self-sufficient over time: formally, the number of queries to the
mentor should be sublinear in T , or equivalently, the rate of querying the mentor should go to zero.

1.2 OUR ASSUMPTIONS

The agent needs some way to make inferences about unqueried inputs in order to decide when to ask
for help. Much past work has used Bayesian inference, which suffers tractability issues in complex
environments.2 We instead assume that the mentor policy satisfies what we call local generalization:
informally, if the mentor told us that an action was safe for a similar input, then that action is probably
also safe for the current input (see Section 3 for a formal definition and further discussion). This
captures the intuition that one can transfer knowledge between similar situations. Unlike Bayesian
inference, local generalization only requires computing distances and is compatible with any input
space which admits a distance metric.

Unlike the standard online learning model, we assume that the agent does not observe payoffs. This
is because the payoff in our model represents the chance of avoiding catastrophe on that time step. In
the real world, one only observes whether catastrophe occurred, not its probability.3

1.3 STANDARD ONLINE LEARNING

An overview of standard online learning is in order before discussing our results. In the standard
model, the agent observes an input on each time step and must choose an action. An adversary then
reveals the correct action, which results in some payoff to the agent. The goal is sublinear regret
with respect to the sum of payoffs, or equivalently, the average regret per time step should go to 0 as
T →∞. Figure 1 delineates the precise differences between the standard model and our model.

If the adversary’s choices are unconstrained, the problem is hopeless: if the adversary determines
the correct action on each time step randomly and independently, the agent can do no better than
random guessing. However, sublinear regret becomes possible if (1) the hypothesis class has finite
Littlestone dimension (Littlestone, 1988), or (2) the hypothesis class has finite VC dimension (Vapnik
& Chervonenkis, 1971) and the input is σ-smooth4 (Haghtalab et al., 2024).

The goal of sublinear regret in online learning implicitly assumes catastrophe is impossible: the agent
can make arbitrarily many (and arbitrarily costly) mistakes as long as the average regret per time step
goes to 0. In contrast, we demand subconstant regret: the total probability of catastrophe should go
to 0. Furthermore, standard online learning allows the agent to observe payoffs on every time step,
while our agent only receives feedback on time steps with queries. However, access to a mentor (and

2For the curious reader, Betancourt (2018) provides a thorough treatment. See also Section 2.
3One may be able to detect “close calls” in some cases, but observing the precise probability seems unrealistic.
4Informally, the adversary chooses a distribution over inputs instead of a precise input. See Section 3.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Objective Regret goal Feedback Mentor Local gen.
Standard model Sum of payoffs Sublinear Every time step No No

Our model Product of payoffs Subconstant Only from queries Yes Yes

Figure 1: Comparison between the standard online learning model and our model.

local generalization) allows our agent to learn without trying actions directly, which is enough to
offset all of the above disadvantages.

1.4 OUR RESULTS

At a high level, we show that avoiding catastrophe with the help of a mentor and local generalization
is no harder than online learning without catastrophic risk.

More precisely, we first show that in general, any algorithm with sublinear queries to the mentor
has arbitrarily poor regret in the worst-case (Theorem 4.1). This means that even when the mentor
can avoid catastrophe with certainty, any algorithm either needs excessive supervision or is nearly
guaranteed to cause catastrophe. Unlike online learning where the general impossibility result is
trivial (the agent might as well guess randomly given an unconstrained adversary), local generalization
significantly limits the adversary’s power and necessitates a careful analysis.

Next, we present a simple algorithm whose total regret and rate of querying the mentor both go
to 0 as T → ∞ when either (1) the mentor policy class has finite Littlestone dimension or (2) the
mentor policy class has finite VC dimension and the input sequence is σ-smooth. Our algorithm can
handle a multi-dimensional unbounded input space and does not need detailed access to the feature
embedding, instead using two simple operations. It does need to know the mentor policy class, as is
standard in online learning. We initially prove the theorem for binary actions (Theorem 5.2) and then
reduce learning with many actions to the binary action case (Theorem C.1).

Along the way, we prove that the same subconstant bound holds for standard additive regret (The-
orem 5.3). Essentially, our techniques are equally effective for maximizing the sum of payoffs
and the product of payoffs. We emphasize the multiplicative objective due to our motivation of
avoiding catastrophe, but our subconstant additive regret bound may also be of value. In summary,
the combination of a mentor and local generalization allows us to reduce the regret by an entire factor
of T , resulting in subconstant regret (multiplicative or additive) instead of the typical sublinear regret.

The rest of the paper is structured as follows. Section 2 discusses related work. Section 3 formally
defines our model. Section 4 presents our negative result for general mentor policies. Section 5
presents our positive result for simple mentor policy classes. Proofs are deferred to the appendix.

2 RELATED WORK

Learning with irreversible costs. Despite the ubiquity of irreparable/irreversible costs in the real
world, theoretical work on this topic remains limited. This may be due to the fundamental modeling
question of how the agent should learn about novel inputs or actions without actually trying them.

The most common approach is to allow the agent to ask for help. This alone is insufficient, however:
the agent must have some way to decide when to ask for help. A popular solution is to perform
Bayesian inference on the world model, but this has two tricky requirements: (1) a prior distribution
which contains the true world model (or an approximation), and (2) an environment where computing
(or approximating) the posterior is tractable. A finite set of possible environments satisfies both
conditions, but is unrealistic in many real-world scenarios. In contrast, our algorithm can handle
an uncountable policy class and a continuous unbounded input space, which is crucial for many
real-world scenarios in which one never sees the exact same input twice.

Bayesian inference combined with asking for help is studied by Cohen et al. (2021); Cohen & Hutter
(2020); Kosoy (2019); Mindermann et al. (2018). We also mention Hadfield-Menell et al. (2017);
Moldovan & Abbeel (2012); Turchetta et al. (2016), which utilize Bayesian inference in the context
of safe (online) reinforcement learning without asking for help (and without regret bounds).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

We are only aware of two papers which theoretically address irreversibility without Bayesian inference:
Grinsztajn et al. (2021) and Maillard et al. (2019). The former proposes to sample trajectories and
learn reversibility based on temporal consistency between states: intuitively, if s1 always precedes s2,
we can infer that s1 is unreachable from s2. Although the paper theoretically grounds this intuition,
there is no formal regret guarantee. The latter presents an algorithm which asks for help in the form of
rollouts from the current state. However, the regret bound and number of rollouts are both linear in the
worst case, due to the dependence on the γ∗ parameter which roughly captures how bad an irreversible
action can be. In contrast, our algorithm achieves good regret even when actions are maximally bad.

To our knowledge, we are the first to provide an algorithm which formally guarantees avoidance of
catastrophe (with high probability) without Bayesian inference. We are also not aware of prior results
comparable to our negative result, including in the Bayesian regime.

Constrained Markov Decision Processes (CMDPs). CMDPs (Altman, 2021; Puterman, 2014)
require the agent to maximize reward while also satisfying safety constraints. The two most relevant
papers are Liu et al. (2021) and Stradi et al. (2024), both of which provide algorithms guaranteed
to satisfy initially unknown safety constraints with high probability on every time step. However,
both papers assume that the agent knows a fully safe policy upfront. In contrast, the agent in our
setting has no prior knowledge. In this sense, our work complements theirs: our goal is essentially
to learn the baseline safe policy that their algorithms require. One can also view our problem as
the “pessimistic” model and their problem as the “optimistic” model, with some applications better
captured by our model while other applications are better captured by theirs.

Online learning. See Cesa-Bianchi & Lugosi (2006) and Chapter 21 of Shalev-Shwartz & Ben-David
(2014) for introductions to online learning. A classical result states that sublinear regret is possible
iff the hypothesis class has finite Littlestone dimension (Littlestone, 1988). However, even some
simple hypothesis classes have infinite Littlestone dimension, such as the class of thresholds on [0, 1]
(Example 21.4 in Shalev-Shwartz & Ben-David (2014)). Recently, Haghtalab et al. (2024) showed
that if the adversary only chooses a distribution over inputs rather than the precise input, only the
weaker assumption of finite VC dimension (Vapnik & Chervonenkis, 1971) is needed for sublinear
regret. Specifically, they assume that each input is sampled from a distribution whose concentration is
upper bounded by 1

σ times the uniform distribution. This framework is known as smoothed analysis,
originally proposed by Spielman & Teng (2004).

Multiplicative objectives. Although online learning traditionally studies the sum of payoffs, there is
some work on maximizing the product of payoffs, or equivalently the sum of logarithms (Chapter 9
of Cesa-Bianchi et al. (2017)). However, these regret bounds are still sublinear in T , in comparison
to our subconstant regret bounds. Also, that work still assumes that payoffs are observed on every
time step, while our agent only receives feedback in response to queries (Figure 1).

Barman et al. (2023) recently provided regret bounds for a multiplicative objective in a multi-armed
bandit problem, but their objective is the geometric mean of payoffs instead of the product. Interpreted
in our context, their regret bounds imply that the average chance of catastrophe goes to zero, while
we guarantee that the total chance of catastrophe goes to zero. This distinction is closed related to the
difference between subconstant and sublinear regret discussed in Section 1.3.

Active learning and imitation learning. Our assumption that the agent only receives feedback
in response to queries falls under the umbrella of active learning (Hanneke, 2014). This contrasts
with passive learning, where the agent receives feedback automatically. Although ideas from active
learning could be useful in our domain, we are not aware of any results from that literature which
account for irreversible costs. The process of the agent learning from a mentor is also reminiscent of
imitation learning (Osa et al., 2018), but we are not aware of any relevant technical implications.

3 MODEL

Inputs. Let N refer to the set of strictly positive integers and let T ∈ N be the time horizon. Let
X ⊆ Rn be the input space5 and let x = (x1, x2, . . . xT) ∈ X T be the sequence of inputs. In the
adversarial setting, each xt can have arbitrary dependence on the events of prior time steps. In the
smoothed setting, the adversary only chooses the distribution xt from which xt is sampled. Formally,

5One could also allow a generic metric space; our assumption of X ⊆ Rn is only for convenience.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

a distribution D over X is σ-smooth if for any X ⊆ X , D(X) ≤ 1
σU(X). (In the smoothed setting,

we assume that X supports a uniform distribution U .6) If each xt is sampled from a σ-smooth Dt,
we say that x is σ-smooth. The sequence D = D1, . . . ,DT can still be adaptive, i.e., the choice of
Dt can depend on the events of prior time steps.

Actions. Let Y be a finite set of actions. There also exists a special action ỹ which corresponds to
querying the mentor. For k ∈ N, let [k] = {1, 2, . . . , k}. On each time step t ∈ [T], the agent must
select an action yt ∈ Y ∪ {ỹ}, which generates payoff µ(xt, yt) ∈ [0, 1]. Unless otherwise noted, all
expectations are over the agent’s randomization (if any) and the randomization in x (if any).

Asking for help. The mentor is endowed with a (not necessarily optimal) policy πm : X → Y .
When action ỹ is chosen, the mentor informs the agent of the action πm(xt) and the agent obtains
payoff µ(xt, π

m(xt)). For brevity, let µm(x) = µ(x, πm(x)). The agent never observes payoffs: the
only way to learn about µ is by querying the mentor.

We would like an algorithm which becomes “self-sufficient” over time: the rate of querying the
mentor should go to 0 as T → ∞, or equivalently, the cumulative number of queries should be
sublinear in T . Formally, let QT (µ, π

m) = {t ∈ [T] : yt = ỹ} be the random variable denoting the
set of time steps with queries. Then we say that the (expected) number of queries is sublinear in T if
supµ,πm E[|QT (µ, π

m)|] ∈ o(T). In other words, there must exist g : N→ N such that g(T) ∈ o(T)

and supµ,πm E[|QT (µ, π
m)|] ≤ g(T).7 For brevity, we will usually write QT = QT (µ, π

m).

Local generalization. We assume that the mentor policy permits “local generalization”. Informally,
if the agent is given an input x, taking the mentor action for a similar input x′ is almost as good as
taking the mentor action for x. Formally, we assume there exists L > 0 such that for all x, x′ ∈ X ,
|µm(x)− µ(x, πm(x′))| ≤ L||x− x′||, where || · || denotes Euclidean distance. This represents the
ability to transfer knowledge between similar inputs:

| µ(x, πm(x))︸ ︷︷ ︸
Taking the “right” action

− µ(x, πm(x′))︸ ︷︷ ︸
Using what you learned in x′

| ≤ L||x− x′||︸ ︷︷ ︸
Similarity between x and x′

Borrowing knowledge from similar experiences seems fundamental to learning and is well-understood
in the psychology literature (Esser et al., 2023) and education literature (Hajian, 2019).

Crucially, our input space can be any feature embedding of the agent’s situation, not just its physical
positioning. Our algorithms will not require knowledge of the feature embedding and do not need
to know L, so it suffices that there exists some feature embedding which satisfies local generalization.
The agent does not even need to know which embedding it is. Finally, local generalization implies
the more familiar Lipschitz continuity for an optimal mentor (Proposition E.1).

Multiplicative objective and regret. If µ(xt, yt) ∈ [0, 1] is the chance of avoiding catastrophe on
time step t (conditioned on no prior catastrophe), then

∏T
t=1 µ(xt, yt) is the agent’s overall chance of

avoiding catastrophe.8 For a fixed x and agent actions y = (y1, . . . , yT), the agent’s regret is

RT (x,y, µ, π
m) =

T∏
t=1

µm(xt)−
T∏

t=1

µ(xt, yt)

We will usually write RT = RT (x,y, µ, π
m) for brevity. We will study the expected regret over any

randomness in x and/or y. We desire subconstant worst-case regret: the total (not average) expected
regret should go to 0 for any µ and πm. Formally, we want limT→∞ supµ,πm E[RT] = 0.

The value of a bound on E[RT] depends on the quality of the mentor. In particular, subconstant regret
becomes trivial if limT→∞ E

[∏T
t=1 µ

m(xt)
]
= 0. However, we think that high-stakes AI applica-

tions should ensure the presence of a mentor who is almost always safe, i.e., E
[∏T

t=1 µ
m(xt)

]
≈ 1.

6For example, X having finite Lebesgue measure is sufficient. Note that this does not imply boundedness.
Alternatively, σ-smoothness can be defined with respect to a different distribution, as long as the Radon-Nikodym
derivative is uniformly bounded; see Definition 1 of Block et al. (2022).

7One could instead consider the worst-case number of queries, but this distinction does not affect whether
subconstant regret is achievable (Proposition E.2).

8Conditioning on no prior catastrophe means we do not need to assume that these probabilities are independent
(and if catastrophe has already occurred, this time step does not matter). This is due to the chain rule of probability.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

If no such mentor exists for some application, perhaps it is better to avoid the application altogether.
Also, our regret bounds include rates of convergence, so even if the mentor policy is guaranteed to
eventually cause catastrophe, we can still bound how quickly the agent becomes unsafe.

VC and Littlestone dimensions. VC dimension (Vapnik & Chervonenkis, 1971) and Littlestone
dimension (Littlestone, 1988) are standard measures of learning difficulty which capture the ability of
a hypothesis class (in our case, a policy class) to realize arbitrary combinations of labels (in our case,
actions). We omit the precise dimensions since we only utilize these concepts via existing results.
See Shalev-Shwartz & Ben-David (2014) for a comprehensive overview.

Misc. The diameter of a set X ⊆ X is defined by diam(X) = maxx,x′∈X ||x− x′||. All logarithms
and exponents are base e unless otherwise noted.

4 AVOIDING CATASTROPHE IS IMPOSSIBLE IN GENERAL

We begin by showing that in general, any algorithm with sublinear mentor queries has arbitrary
poor regret in the worst-case, even when inputs are i.i.d. on [0, 1]. The result also holds even if the
algorithm knows L and x ahead of time.
Theorem 4.1. The worst-case expected regret of any algorithm with sublinear queries goes to 1 as T
goes to infinity. Formally, limT→∞ supµ,πm E[RT] = 1.

4.1 INTUITION

We partition X into equally-sized sections that are “independent” in the sense that querying an input
in section i gives you no information about section j. The number of sections is determined by a
function f : N → N that we will choose. If |QT | ∈ o(f(T)), most of these sections will never
contain a query. When the agent sees an input in a section not containing a query, it essentially has to
guess, meaning it will be wrong a constant fraction of the time. Figure 2 fleshes out this idea.

Picking f(T). A natural idea is to try f(T) = T , but this doesn’t quite work: even if the
agent chooses wrong on every time step, the minimum payoff is still at least 1 − L

2T , and

limT→∞
∏T

t=1

(
1− L

2T

)
= limT→∞

(
1− L

2T

)T
= e−L/2. In order for the regret to approach 1, we

need f(T) to be asymptotically between |QT | and T (xuch f must exist since |QT | ≤ g(T) ∈ o(T)).
This leads to the following bound:

∏T
t=1 µ(xt, yt) ≤

(
1− L

Θ(f(T))

)Θ(T)
. When f(T) ∈ o(T), the

right hand side converges to 0, while
∏T

t=1 µ
m(xt) = 1. In words, the agent is nearly guaranteed to

cause catastrophe, despite the existence of a policy which is guaranteed to avoid catastrophe.

VC dimension. The class of mentor policies induced by our construction has VC dimension f(T);
considered over all possible values of T , this implies infinite VC (and Littlestone) dimension. This is
necessary given our positive results in Section 5.

4.2 FORMAL DEFINITION OF CONSTRUCTION

Let X = [0, 1] and Dt = U for each t ∈ [T]. Assume that L ≤ 1; this will simplify the math and
only makes the problem easier for the agent. We define a family of payoff functions parameterized by
a function f : N→ N and a bit string a = (a1, a2, . . . , af(T)) ∈ {0, 1}f(T). The bit aj will denote
the optimal action in section j. Note that f(T) ≥ 1 and since we defined N to exclude 0.

For each j ∈ [f(T)], we refer to Xj =
[
j − 1

f(T)
,

j

f(T)

]
as the jth section. Let mj =

j − 0.5

f(T)
be the

midpoint of Xj . Assume that each xt belongs to exactly one Xj (this happens with probability 1, so
this assumption does affect the expected regret). Let j(x) denote the index of the section containing
input x. Then µf,a is defined by

µf,a(x, y) =

1 if y = aj(x)

1− L

(
1

2f(T)
− |mj(x) − x|

)
if y ̸= aj(x)

Let πm be any policy which is optimal for µf,a. Note that there is a unique optimal action for each
xt, since each xt belongs to exactly one Xj ; formally, πm(xt) = aj(xt).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

x

µ

µ(x, 0)

µ(x, 1)

L

2f(T)

1
f(T)

2
f(T)

3
f(T)

f(T)−1
f(T)

. . . 10

1

Figure 2: An illustration of the construction we use to prove Theorem 4.1 (not to scale). The horizontal axis
indicates the input x ∈ [0, 1] and the vertical axis indicates the payoff µ(x, y) ∈ [0, 1]. The solid line represents
µ(x, 0) and the dotted line represents µ(x, 1). In each section, one of the actions has the optimal payoff of 1,
and the other action has the worst possible payoff allowed by L, reaching a minimum of 1− L

2f(T)
. Crucially,

both actions result in a payoff of 1 at the boundaries between sections: this allows us to “reset” for the next
section. As a result, we can freely toggle the optimal action for each section independently.

For any a ∈ {0, 1}f(T), µf,a is piecewise linear (trivially) and continuous (because both actions have
payoff 1 on the boundary between sections). Since the slope of each piece is in {−L, 0, L}, µf,a is
Lipschitz continuous. Thus by Proposition E.1, πm satisfies local generalization.

5 AVOIDING CATASTROPHE ASSUMING FINITE VC OR LITTLESTONE
DIMENSION

Theorem 4.1 shows that avoiding catastrophe is impossible in general, which is also true in online
learning. What if we restrict ourselves to settings where standard online learning is possible?
Specifically, we assume that πm belongs to a policy class Π where either (1) Π has finite VC
dimension d and x is σ-smooth or (2) Π has finite Littlestone dimension d.9

This section presents a simple algorithm which guarantees subconstant regret and sublinear queries
under either of those assumptions. Our algorithm needs to know Π, as is standard in online learning.
The algorithm does not need to know σ (in the smooth case) or L, and can handle an unbounded input
space (the number of queries simply scales with the maximum distance between observed inputs).

For simplicity, we initially prove our result for Y = {0, 1}. Appendix C extends our result to many
actions using the standard “one versus rest” reduction.10

5.1 INTUITION BEHIND THE ALGORITHM

Algorithm 1 has two simple components: (1) run a modified version of the Hedge algorithm for
online learning, but (2) ask for help for unfamiliar inputs (specifically, when the current input is very
different from any queried input with the same action under the proposed policy). Hedge ensures that
the number of time steps where the agent’s action doesn’t match the mentor’s is small, and asking
for help for unfamiliar inputs ensures that when we do make a mistake, the cost isn’t too high. This
algorithmic structure seems quite natural: mostly follow a baseline strategy, but ask for help when
out-of-distribution.

Simple operations. The algorithm does not require detailed access to the input embedding, instead
relying on two simple operations: evaluating a policy on a particular input, and computing a nearest

9Recall from Section 1.3 that standard online learning becomes tractable under either of these assumptions.
10For each action y, we learn a binary classifier which predicts whether πm(x) = y. If every binary classifier

is correct, we can correctly determine πm(x). See, e.g., Chapter 29 of Shalev-Shwartz & Ben-David (2014).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Algorithm 1 successfully avoids catastrophe assuming finite VC or Littlestone dimension.
1: function AVOIDCATASTROPHE(T ∈ N, ε ∈ R>0, d ∈ N, policy class Π)
2: if Π has VC dimension d then
3: Π̃← any smooth ε-cover of Π of size at most (41/ε)d ▷ See Definition 5.4
4: else
5: Π̃← any adversarial cover of size at most (eT/d)d ▷ See Definition 5.5
6: X ← ∅
7: w(π)← 1 for all π ∈ Π̃

8: p← 1/
√
εT

9: η ← max
(√p log |Π̃|

2T , p2

√
2

)
10: for t from 1 to T do ▷ Run one step of Hedge, which selects policy πt

11: hedgeQuery← true with probability p else false
12: if hedgeQuery then
13: Query mentor and observe πm(xt)

14: ℓ(t, π)← 1(π(xt) ̸= πm(xt)) for all π ∈ Π̃
15: ℓ∗ ← minπ∈Π̃ ℓ(t, π)

16: w(π)← w(π) · exp(−η(ℓ(t, π)− ℓ∗)) for all π ∈ Π̃
17: πt ← argminπ∈Π̃ ℓ(t, π)
18: else
19: P (π)← w(π)/

∑
π′∈Π̃ w(π′) for all π ∈ Π̃

20: Sample πt ∼ P

21: if min(x,y)∈X:y=πt(xt) ||xt − x|| > ε1/n then ▷ Ask for help if out-of-distribution
22: Query mentor and observe πm(xt)
23: X ← X ∪ {(xt, π

m(xt))}
24: else ▷ Otherwise, follow Hedge’s chosen policy
25: Take action πt(xt)

neighbor distance. The former seems necessary for any algorithm. The latter could be modeled as an
out-of-distribution detector score, for which many methods are available (see e.g., Yang et al. (2024)).

Hedge. Hedge (Freund & Schapire, 1997) is a standard online learning algorithm which ensures
sublinear regret when the number of hypotheses (in our case, the number of policies in Π) is finite.11

We would prefer not to assume that Π is finite. Luckily, any policy Π can be approximated within ε
when either (1) Π has finite VC dimension and x σ-smooth or (2) Π has finite Littlestone dimension.
Thus we can run Hedge on this approximative policy class instead.

One other modification is necessary. In standard online learning, losses are observed on every time
step, but our agent only receives feedback in response to queries. To handle this, we modify Hedge to
only perform updates on time steps with queries and to issue a query with probability p on each time
step. Continuing our lucky streak, Russo et al. (2024) analyzes exactly this modification of Hedge.

We prove the following theorem parametrized by ε:
Theorem 5.1. Let Y = {0, 1}. Assume πm ∈ Π where either (1) Π has finite VC dimension d, x
is σ-smooth, and εT log T > 12σd log(4e2/ε) or (2) Π has finite Littlestone dimension d. Then for
any T ∈ N and ε > 0, Algorithm 1 satisfies

E [RT] ∈ O

(
dL

σ
Tε1+1/n log(1/ε) log T

)
E[|QT |] ∈ O

(√
T

ε
+

d

σ
Tε log(1/ε) log T +

diam(x)n

ε

)

In Case 1, the expectation is over the randomness of both x and the algorithm, while in Case 2,
the expectation is over only the randomness of the algorithm. Also, RT and QT clearly have no
dependence on σ in Case 2, but we include σ anyway to avoid writing two separate bounds.

11See Chapter 5 of Slivkins et al. (2019) and Chapter 21 of Shalev-Shwartz & Ben-David (2014) for modern
introductions to Hedge.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

To obtain subconstant regret and sublinear queries, we can choose ε = T
−2n
2n+1 . This also satisfies the

requirement of εT log T > 12σd log(4e2/ε) for large enough T .
Theorem 5.2. Let Y = {0, 1}. Assume πm ∈ Π where either (1) Π has finite VC dimension d and
x is σ-smooth or (2) Π has finite Littlestone dimension d. Then for any T ∈ N, Algorithm 1 with
ε = T

−2n
2n+1 satisfies

E [RT] ∈ O

(
dL

σ
T

−1
2n+1 log T

)
E[|QT |] ∈ O

(
T

4n+1
4n+2

(
d

σ
log T + diam(x)n

))
Although our focus is the product of payoffs, Algorithm 1 also guarantees subconstant additive regret:
Theorem 5.3. Let Y = {0, 1}. Assume πm ∈ Π where either (1) Π has finite VC dimension d and
x is σ-smooth or (2) Π has finite Littlestone dimension d. Then for any T ∈ N, Algorithm 1 with
ε = T

−2n
2n+1 satisfies

E

[
T∑

t=1

µm(xt)−
T∑

t=1

µ(xt, yt)

]
∈ O

(
dL

σ
T

−1
2n+1 log T

)

5.2 PROOF SKETCH

The formal proof of Theorem 5.1 can be found in Appendix B, but we outline the key elements here.
The regret analysis consists of two ingredients: analyzing the Hedge component, and analyzing the
“ask for help when out-of-distrubtion” component. The former will bound the number of mistakes
made by the algorithm (i.e., the number of time steps where the agent’s action doesn’t match the
mentor’s), and the latter will bound the cost of any single mistake. We must also carefully show that
the latter does not result in excessively many queries, which we do via a novel packing argument.

We begin by formalizing two notion of approximating a policy class:

Definition 5.4. Let U be the uniform distribution over X . For ε > 0, a policy class Π̃ is a smooth
ε-cover of a policy class Π is for every π ∈ Π, there exists π̃ ∈ Π̃ such that Prx∼U [π(x) ̸= π̃(x)] ≤ ε.

Definition 5.5. A policy class Π̃ is an adversarial cover of a policy class Π is for every x ∈ X T and
π ∈ Π, there exists π̃ ∈ Π̃ such that π(xt) = π̃(xt) for all t ∈ [T].

The existence of small covers is crucial:
Lemma 5.1 (Lemma 7.3.2 in Haghtalab (2018)12). For all ε > 0, any policy class of VC dimension
d admits a smooth ε-cover of size at most (41/ε)d.
Lemma 5.2 (Lemmas 21.13 and A.5 in Shalev-Shwartz & Ben-David (2014)). Any policy class of
Littlestone dimension d admits an adversarial cover of size at most (eT/d)d.

An adversarial cover is a perfect cover by definition. The following lemma establishes that a smooth
ε-cover is a good approximation for any sequence of σ-smooth distributions.

Lemma 5.3 (Equation 2 and Lemma 3.3 in Haghtalab et al. (2024)). Let Π̃ be a finite smooth
ε-cover of Π and let D = D1, . . . ,DT be a sequence of σ-smooth distributions. If εT log T >

12σd log(4e2/ε), then E
x∼D

[
sup
π∈Π

min
π̃∈Π̃

∑T
t=1 1(π(xt) ̸= π̃(xt))

]
∈ O

(
1
σTε log T

√
d log(1/ε)

)
.

We will run a variant of Hedge on Π̃. The vanilla Hedge algorithm operates in the standard online
learning model where on each time step, the agent selects a policy (or more generally, a hypothesis),
and observes the loss of every policy. In general the loss function can depend arbitrarily on the time
step, the policy, and prior events, but we will only use the indicator loss function ℓ(t, π) = 1(π(xt) ̸=
πm(xt)). Crucially, whenever we query and learn πm(xt), we can compute ℓ(t, π) for every π ∈ Π̃.

12See also Haussler & Long (1995) or Lemma 13.6 in Boucheron et al. (2013) for variants which are less
convenient for our purposes.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

We cannot afford to query on every time step, however. Recently, Russo et al. (2024) analyzed a
variant of Hedge where losses are observed only in response to queries, which they call “label-efficient
feedback”. They proved a regret bound when a query is issued on each time step with fixed probability
p. Lemma 5.4 restates their result in a form that is more convenient for us (see Appendix B for
details). Although their result is stated for non-adaptive adversaries, we explain in Appendix B.3 how
their argument easily generalizes to adaptive adversaries. Full pseudocode for HEDGEWITHQUERIES
can also be found in the appendix (Algorithm 2).

Lemma 5.4 (Lemma 3.5 in Russo et al. (2024)). Assume Π̃ is finite. Then for any loss function
ℓ : [T]× Π̃→ [0, 1] and query probability p, HEDGEWITHQUERIES enjoys the regret bound

T∑
t=1

E[ℓ(t, πt)]−min
π̃∈Π̃

T∑
t=1

ℓ(t, π) ≤ 2 log |Π̃|
p2

where πt is the policy chosen at time t and the expectation is over the randomness of the algorithm.

We apply Lemma 5.4 with ℓ(t, π) = 1(π(xt) ̸= πm(xt)) and combine this with Lemmas 5.1
and 5.3 (in the σ-smooth case) and with Lemma 5.2 (in the adversarial case). This yields a
O
(
d
σTε log(1/ε) log T

)
bound on the number of mistakes made by Algorithm 1 (Lemma B.1).

The other key ingredient of the proof is analyzing the “ask for help when out-of-distribution” compo-
nent. Combined with the local generalization assumption, this allows us to fairly easily bound the
cost of a single mistake (Lemma B.2). The trickier part is bounding the number of resulting queries.
It is tempting to claim that the inputs queried in the out-of-distribution case must all be separated by
at least ε1/n and thus form an ε1/n-packing, but this is actually not true. Instead, we provide a novel
method for bounding the number of data points (i.e., queries) needed to cover a set with respect to
the realized actions of the algorithm (Lemma B.7). This is in contrast to vanilla packing arguments
which consider all data points in aggregate. Our method may be useful in other contexts where a
more refined packing argument is needed.

6 CONCLUSION AND FUTURE WORK

In this paper, we proposed a model of avoiding catastrophe in online learning. We showed that
achieving subconstant regret in our problem (with the help of a mentor and local generalization) is no
harder than achieving sublinear regret in standard online learning.

There remain some technical questions within this paper’s model. One question is whether the time
complexity of Algorithm 1 be improved, which currently stands at Ω(|Π̃| ·T) plus the time to compute
the ε-cover. Also, we have not resolved whether our problem is tractable for finite VC dimension and
fully adversarial inputs (although Appendix D shows that the problem is tractable for at least some
classes with finite VC but infinite Littlestone dimension).

We are also interested in alternatives to the local generalization assumption. We should expect some
assumption to be necessary: if not, the payoff function µ(x, y) = 1(πm(x) = y) means the agent
essentially has to make zero mistakes, which turns out to be impossible even for σ-smooth x and
finite VC dimension (Theorem E.3). One possible alternative is Bayesian inference. We intentionally
avoided Bayesian approaches in this paper due to tractability concerns, but it seems premature to
abandon those ideas entirely.

Finally, we are excited to apply the ideas in this paper to Markov Decision Processes (MDPs):
specifically, MDPs where some actions are irreversible (“non-communicating”) and the agent only
gets one attempt (“single-episode”). In such MDPs, the agent must not only avoid catastrophe but also
obtain high reward. As discussed in Section 2, very little theory exists for RL in non-communicating
single-episode MDPs. Can an agent learn near-optimal behavior in high-stakes environments while
becoming self-sufficient over time? Formally, we pose the following open problem:

Is there an algorithm for non-communicating single-episode undiscounted MDPs which ensures that
both the regret and the number of mentor queries are sublinear in T?

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Stanislav Abaimov and Maurizio Martellini. Artificial Intelligence in Autonomous Weapon
Systems, pp. 141–177. Springer International Publishing, Cham, 2020. ISBN 978-3-
030-28285-1. doi: 10.1007/978-3-030-28285-1 8. URL https://doi.org/10.1007/
978-3-030-28285-1_8.

Eitan Altman. Constrained Markov decision processes. Routledge, 2021.

Mohammad Gheshlaghi Azar, Ian Osband, and Rémi Munos. Minimax Regret Bounds for Reinforce-
ment Learning. In Proceedings of the 34th International Conference on Machine Learning, pp.
263–272. PMLR, July 2017. URL https://proceedings.mlr.press/v70/azar17a.
html. ISSN: 2640-3498.

Siddharth Barman, Arindam Khan, Arnab Maiti, and Ayush Sawarni. Fairness and welfare quantifica-
tion for regret in multi-armed bandits. In Proceedings of the Thirty-Seventh AAAI Conference on
Artificial Intelligence and Thirty-Fifth Conference on Innovative Applications of Artificial Intelli-
gence and Thirteenth Symposium on Educational Advances in Artificial Intelligence, volume 37
of AAAI’23/IAAI’23/EAAI’23, pp. 6762–6769. AAAI Press, February 2023. ISBN 978-1-57735-
880-0. doi: 10.1609/aaai.v37i6.25829. URL https://doi.org/10.1609/aaai.v37i6.
25829.

Michael Betancourt. A Conceptual Introduction to Hamiltonian Monte Carlo, July 2018. URL
http://arxiv.org/abs/1701.02434. arXiv:1701.02434 [stat].

Adam Block, Yuval Dagan, Noah Golowich, and Alexander Rakhlin. Smoothed online learning is as
easy as statistical learning. In Conference on Learning Theory, pp. 1716–1786. PMLR, 2022.

Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. Concentration Inequalities: A Nonasymp-
totic Theory of Independence. Oxford University Press, 02 2013. ISBN 9780199535255.
doi: 10.1093/acprof:oso/9780199535255.001.0001. URL https://doi.org/10.1093/
acprof:oso/9780199535255.001.0001.

Nicolo Cesa-Bianchi and Gábor Lugosi. Prediction, learning, and games. Cambridge university
press, 2006.

Nicolò Cesa-Bianchi, Pierre Gaillard, Claudio Gentile, and Sébastien Gerchinovitz. Algorithmic
Chaining and the Role of Partial Feedback in Online Nonparametric Learning. In Proceedings
of the 2017 Conference on Learning Theory, pp. 465–481. PMLR, June 2017. URL https:
//proceedings.mlr.press/v65/cesa-bianchi17a.html. ISSN: 2640-3498.

Michael K. Cohen and Marcus Hutter. Pessimism About Unknown Unknowns Inspires Conservatism.
In Proceedings of Thirty Third Conference on Learning Theory, pp. 1344–1373. PMLR, July 2020.
URL https://proceedings.mlr.press/v125/cohen20a.html. ISSN: 2640-3498.

Michael K. Cohen, Elliot Catt, and Marcus Hutter. Curiosity Killed or Incapacitated the Cat and
the Asymptotically Optimal Agent. IEEE Journal on Selected Areas in Information Theory, 2
(2):665–677, June 2021. ISSN 2641-8770. doi: 10.1109/JSAIT.2021.3079722. URL https:
//ieeexplore.ieee.org/document/9431093. Conference Name: IEEE Journal on
Selected Areas in Information Theory.

Andrew Critch and Stuart Russell. Tasra: a taxonomy and analysis of societal-scale risks from ai.
arXiv preprint arXiv:2306.06924, 2023.

Ezio Di Nucci. Should we be afraid of medical ai? Journal of Medical Ethics, 45(8):556–558, 2019.

Sarah Esser, Hilde Haider, Clarissa Lustig, Takumi Tanaka, and Kanji Tanaka. Action–effect
knowledge transfers to similar effect stimuli. Psychological Research, 87(7):2249–2258, October
2023. ISSN 1430-2772. doi: 10.1007/s00426-023-01800-4. URL https://doi.org/10.
1007/s00426-023-01800-4.

Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-line learning and an
application to boosting. Journal of computer and system sciences, 55(1):119–139, 1997.

11

https://doi.org/10.1007/978-3-030-28285-1_8
https://doi.org/10.1007/978-3-030-28285-1_8
https://proceedings.mlr.press/v70/azar17a.html
https://proceedings.mlr.press/v70/azar17a.html
https://doi.org/10.1609/aaai.v37i6.25829
https://doi.org/10.1609/aaai.v37i6.25829
http://arxiv.org/abs/1701.02434
https://doi.org/10.1093/acprof:oso/9780199535255.001.0001
https://doi.org/10.1093/acprof:oso/9780199535255.001.0001
https://proceedings.mlr.press/v65/cesa-bianchi17a.html
https://proceedings.mlr.press/v65/cesa-bianchi17a.html
https://proceedings.mlr.press/v125/cohen20a.html
https://ieeexplore.ieee.org/document/9431093
https://ieeexplore.ieee.org/document/9431093
https://doi.org/10.1007/s00426-023-01800-4
https://doi.org/10.1007/s00426-023-01800-4

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Nathan Grinsztajn, Johan Ferret, Olivier Pietquin, philippe preux, and Matthieu Geist. There Is
No Turning Back: A Self-Supervised Approach for Reversibility-Aware Reinforcement Learning.
In Advances in Neural Information Processing Systems, volume 34, pp. 1898–1911. Curran As-
sociates, Inc., 2021. URL https://proceedings.neurips.cc/paper/2021/hash/
0e98aeeb54acf612b9eb4e48a269814c-Abstract.html.

Blessing Guembe, Ambrose Azeta, Sanjay Misra, Victor Chukwudi Osamor, Luis Fernandez-Sanz,
and Vera Pospelova. The Emerging Threat of Ai-driven Cyber Attacks: A Review. Applied Artificial
Intelligence, 36(1), December 2022. ISSN 0883-9514, 1087-6545. doi: 10.1080/08839514.2022.
2037254. URL https://www.tandfonline.com/doi/full/10.1080/08839514.
2022.2037254.

Dylan Hadfield-Menell, Smitha Milli, Pieter Abbeel, Stuart Russell, and Anca D. Dragan. Inverse
reward design. In Proceedings of the 31st International Conference on Neural Information
Processing Systems, NIPS’17, pp. 6768–6777, Red Hook, NY, USA, December 2017. Curran
Associates Inc. ISBN 978-1-5108-6096-4.

Nika Haghtalab. Foundation of Machine Learning, by the People, for the People. PhD thesis,
Microsoft Research, 2018.

Nika Haghtalab, Tim Roughgarden, and Abhishek Shetty. Smoothed analysis with adaptive adver-
saries. Journal of the ACM, 71(3):1–34, 2024.

Shiva Hajian. Transfer of Learning and Teaching: A Review of Transfer Theories and Effective
Instructional Practices. IAFOR Journal of Education, 7(1):93–111, 2019. URL https://
eric.ed.gov/?id=EJ1217940. Publisher: International Academic Forum ERIC Number:
EJ1217940.

Steve Hanneke. Theory of disagreement-based active learning. 7(2–3):131–309, j=Jun 2014. ISSN
1935-8237. doi: 10.1561/2200000037. URL https://doi.org/10.1561/2200000037.

David Haussler and Philip M Long. A generalization of Sauer’s lemma. Journal of Com-
binatorial Theory, Series A, 71(2):219–240, August 1995. ISSN 0097-3165. doi: 10.
1016/0097-3165(95)90001-2. URL https://www.sciencedirect.com/science/
article/pii/0097316595900012.

Dan Hendrycks, Mantas Mazeika, and Thomas Woodside. An overview of catastrophic ai risks, 2023.
URL https://arxiv.org/abs/2306.12001.

Thomas Jaksch, Ronald Ortner, and Peter Auer. Near-optimal Regret Bounds for Reinforcement
Learning. Journal of Machine Learning Research, 11(51):1563–1600, 2010. ISSN 1533-7928.
URL http://jmlr.org/papers/v11/jaksch10a.html.

Heinrich Jung. Ueber die kleinste kugel, die eine räumliche figur einschliesst. Journal für die reine
und angewandte Mathematik, 123:241–257, 1901. URL http://eudml.org/doc/149122.

Puneet Kohli and Anjali Chadha. Enabling pedestrian safety using computer vision techniques: A case
study of the 2018 uber inc. self-driving car crash. In Advances in Information and Communication:
Proceedings of the 2019 Future of Information and Communication Conference (FICC), Volume 1,
pp. 261–279. Springer, 2020.

Vanessa Kosoy. Delegative Reinforcement Learning: learning to avoid traps with a little help. arXiv,
July 2019. doi: 10.48550/arXiv.1907.08461. URL http://arxiv.org/abs/1907.08461.
arXiv:1907.08461 [cs, stat].

Nick Littlestone. Learning quickly when irrelevant attributes abound: A new linear-threshold
algorithm. Machine learning, 2:285–318, 1988.

Tao Liu, Ruida Zhou, Dileep Kalathil, Panganamala Kumar, and Chao Tian. Learning policies
with zero or bounded constraint violation for constrained mdps. Advances in Neural Information
Processing Systems, 34:17183–17193, 2021.

12

https://proceedings.neurips.cc/paper/2021/hash/0e98aeeb54acf612b9eb4e48a269814c-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/0e98aeeb54acf612b9eb4e48a269814c-Abstract.html
https://www.tandfonline.com/doi/full/10.1080/08839514.2022.2037254
https://www.tandfonline.com/doi/full/10.1080/08839514.2022.2037254
https://eric.ed.gov/?id=EJ1217940
https://eric.ed.gov/?id=EJ1217940
https://doi.org/10.1561/2200000037
https://www.sciencedirect.com/science/article/pii/0097316595900012
https://www.sciencedirect.com/science/article/pii/0097316595900012
https://arxiv.org/abs/2306.12001
http://jmlr.org/papers/v11/jaksch10a.html
http://eudml.org/doc/149122
http://arxiv.org/abs/1907.08461

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Odalric-Ambrym Maillard, Timothy Mann, Ronald Ortner, and Shie Mannor. Active Roll-
outs in MDP with Irreversible Dynamics. July 2019. URL https://hal.science/
hal-02177808.

Sören Mindermann, Rohin Shah, Adam Gleave, and Dylan Hadfield-Menell. Active Inverse Reward
Design. In Proceedings of the 1st Workshop on Goal Specifications for Reinforcement Learning,
2018. URL http://arxiv.org/abs/1809.03060. arXiv:1809.03060 [cs, stat].

Teodor Mihai Moldovan and Pieter Abbeel. Safe exploration in Markov decision processes. In
Proceedings of the 29th International Coference on International Conference on Machine Learning,
ICML’12, pp. 1451–1458, Madison, WI, USA, June 2012. Omnipress. ISBN 978-1-4503-1285-1.

Christopher A Mouton, Caleb Lucas, and Ella Guest. The operational risks of ai in large-scale
biological attacks, 2024.

T. Osa, J. Pajarinen, G. Neumann, J.A. Bagnell, P. Abbeel, and J. Peters. An Algorithmic Perspective
on Imitation Learning. Foundations and trends in robotics. Now Publishers, 2018. ISBN 978-1-
68083-410-9. URL https://books.google.com/books?id=6p6EtQEACAAJ.

Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons, 2014.

Joaquin Quionero-Candela, Masashi Sugiyama, Anton Schwaighofer, and Neil D. Lawrence. Dataset
Shift in Machine Learning. The MIT Press, 2009. ISBN 0262170051.

Matteo Russo, Andrea Celli, Riccardo Colini Baldeschi, Federico Fusco, Daniel Haimovich, Dima
Karamshuk, Stefano Leonardi, and Niek Tax. Online learning with sublinear best-action queries.
arXiv preprint arXiv:2407.16355, 2024.

Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning: From Theory to
Algorithms. Cambridge University Press, 1 edition, May 2014. ISBN 978-1-107-05713-5 978-
1-107-29801-9. doi: 10.1017/CBO9781107298019. URL https://www.cambridge.org/
core/product/identifier/9781107298019/type/book.

Aleksandrs Slivkins et al. Introduction to multi-armed bandits. Foundations and Trends® in Machine
Learning, 12(1-2):1–286, 2019.

Daniel A Spielman and Shang-Hua Teng. Smoothed analysis of algorithms: Why the simplex
algorithm usually takes polynomial time. Journal of the ACM (JACM), 51(3):385–463, 2004.

Francesco Emanuele Stradi, Matteo Castiglioni, Alberto Marchesi, and Nicola Gatti. Learning
adversarial mdps with stochastic hard constraints. arXiv preprint arXiv:2403.03672, 2024.

Matteo Turchetta, Felix Berkenkamp, and Andreas Krause. Safe Exploration in Finite Markov Deci-
sion Processes with Gaussian Processes. In Advances in Neural Information Processing Systems,
volume 29. Curran Associates, Inc., 2016. URL https://proceedings.neurips.cc/
paper/2016/hash/9a49a25d845a483fae4be7e341368e36-Abstract.html.

V. N. Vapnik and A. Ya. Chervonenkis. On the Uniform Convergence of Relative Frequencies of
Events to Their Probabilities. Theory of Probability & Its Applications, 16(2):264–280, January
1971. ISSN 0040-585X. doi: 10.1137/1116025. URL https://epubs.siam.org/doi/
10.1137/1116025. Publisher: Society for Industrial and Applied Mathematics.

John Villasenor and Virginia Foggo. Artificial intelligence, due process and criminal sentencing.
Mich. St. L. Rev., pp. 295, 2020.

Yihong Wu. Lecture notes on: Information-theoretic methods for high-dimensional statistics. 2020.

Jingkang Yang, Kaiyang Zhou, Yixuan Li, and Ziwei Liu. Generalized out-of-distribution detection:
A survey. International Journal of Computer Vision, pp. 1–28, 2024.

13

https://hal.science/hal-02177808
https://hal.science/hal-02177808
http://arxiv.org/abs/1809.03060
https://books.google.com/books?id=6p6EtQEACAAJ
https://www.cambridge.org/core/product/identifier/9781107298019/type/book
https://www.cambridge.org/core/product/identifier/9781107298019/type/book
https://proceedings.neurips.cc/paper/2016/hash/9a49a25d845a483fae4be7e341368e36-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/9a49a25d845a483fae4be7e341368e36-Abstract.html
https://epubs.siam.org/doi/10.1137/1116025
https://epubs.siam.org/doi/10.1137/1116025

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A PROOF OF THEOREM 4.1

A.1 PROOF ROADMAP

Throughout the proof, let Vj be the set of time steps t ≤ T where |mj − xt| ≤
1

4f(T)
. In words, xt

is relatively close to the midpoint of Xj . This will imply that the suboptimal action is in fact quite
suboptimal. This also implies that xt is in Xj , since each Xj has length 1/f(T).

The proof proceeds via the following steps:

1. Prove that f(T) =
√

(|QT |+ 1)T is asymptotically between |QT | and T (Lemma A.1).
2. Provide a simple variant of the Chernoff bound which we will apply multiple times

(Lemma A.2).
3. Show that with high probability,

∑
j∈A |Vj | is adequately large (Lemma A.3).

4. The key lemma is Lemma A.4, which shows that a randomly sampled a produces poor agent
performance with high probability. The central idea is that at least f(T)− |QT | sections
are never queried (which is large, by Lemma A.1), so the agent has no way of knowing the
optimal action in those sections. As a result, the agent picks the wrong answer at least half
the time on average (and at least a quarter of the time with high probability). Lemma A.3
implies that a constant fraction of those time steps will have quite suboptimal payoffs, again
with high probability.

5. Finally, sup
µ

E
x∼UT ,y

RT (x,y, µ, π
m) ≥ E

a∼U({0,1}f(T))
E

x∼UT ,y
RT (x,y, µf,a, π

m),

where U({0, 1}f(T)) is the uniform distribution over bit strings of length f(T). This
is essentially an application of the probabilistic method: if a randomly chosen µf,a has high
expected regret, then the worst case µ also has high expected regret.

Note that x,y, and a are random variables, so all variables defined on top of them (xuch as Vj) are
also random variables. In contrast, the partition X = {X1, . . . , Xf(T)} and properties thereof (like
the midpoints mj) are not random variables.

Lastly, while the intuition provided in Section 4.1 is accurate, the analysis will mostly occur in log
space, so the bounds will look different. However, bounds of the form discussed in Section 4.1 can
still be found as an intermediate step in Part 4 of the proof of Lemma A.4.

A.2 PROOF

Lemma A.1. Let a, b : N → N be functions such that a(x) ∈ o(b(x)). Then c(x) =
√
a(x)b(x)

satisfies a(x) ∈ o(c(x)) and c(x) ∈ o(b(x)).

Proof. Since a and b are strictly positive (and thus c is as well), we have

a(x)

c(x)
=

a(x)√
a(x)b(x)

=

√
a(x)

b(x)
=

√
a(x)b(x)

b(x)
=

c(x)

b(x)

Then a(x) ∈ o(b(x)) implies

lim
x→∞

a(x)

c(x)
= lim

x→∞

c(x)

b(x)
= lim

x→∞

√
a(x)

b(x)
= 0

as required.

Lemma A.2. Let z1, . . . , zn be i.i.d. variables in {0, 1} and let Z =
∑n

i=1 zi. If E[Z] ≥ M , then
Pr
[
Z ≤M/2

]
≤ exp(−M/8).

Proof. By the Chernoff bound for i.i.d. binary variables, we have Pr[Z ≤ E[Z]/2] ≤
exp(−E[Z]/8). Since −E[Z] ≤ −M and exp is an increasing function, we have exp(−E[Z]/8) ≤
exp(−M/8). Also, M/2 ≤ E[Z]/2 implies Pr[Z ≤ M/2] ≤ Pr[Z ≤ E[Z]/2]. Combining these
inequalities proves the lemma.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Lemma A.3. let A ⊆ [f(T)] be any nonempty subset of sections. Then

Pr

∑
j∈A

|Vj | ≤
T |A|
4f(T)

 ≤ exp

(
−T

16f(T)

)

Proof. Fix any j ∈ [f(T)]. For each t ∈ [T] , define the random variable zt by zt = 1 if t ∈ Vj

for some j ∈ A and 0 otherwise. We have t ∈ Vj iff xt falls within a particular interval of length
1

2f(T)
. Since these intervals are disjoint for different j’s, we have zt = 1 iff xt falls within a portion

of the input space with total measure
|A|

2f(T)
. Since xt is uniformly random across [0, 1], we have

E[zt] = |A|
2f(T) . Then E[

∑T
t=1 zt] = E[

∑
j∈A |Vj |] = T |A|

2f(T) . Furthermore, since x1, . . . , xT are
i.i.d., so are z1, . . . , zT . Then by Lemma A.2,

Pr

∑
j∈A

|Vj | ≤
T |A|
4f(T)

 ≤ exp

(
−T |A|
16f(T)

)
≤ exp

(
−T

16f(T)

)
with the last step due to |A| ≥ 1.

Lemma A.4. Independently sample a ∼ U({0, 1}f(T)) and x ∼ UT .13 Then with probability at
least 1− exp

(−T
16f(T)

)
− exp

(
− f(T)−|QT |

16

)
,

T∏
t=1

µf,a(xt, yt) ≤ exp

(
−LT (f(T)− |QT |)

27f(T)2

)

Proof. Part 1: setup. Let J¬Q = {j ∈ [f(T)] : xt ̸∈ Xj ∀t ∈ QT } be the set of sections that are
never queried. Since each query appears in exactly one section (because each input appears in exactly
one section), |J¬Q| ≥ f(T)− |QT |.
For each j ∈ J¬Q, let yj be the action taken most frequently among time steps in Vj :

yj = argmax
y∈{0,1}

∣∣∣{t ∈ Vj : y = yt}
∣∣∣

Let J̄ = {j ∈ J¬Q : aj ̸= yj}. For each j ∈ J̄ , let V ′
j = {t ∈ Vj : yt ̸= aj} be the set of time steps

where the agent chooses the wrong action (assuming payoff function µf,a).

Part 2: J̄ is not too small. Define a random variable zj = 1j∈J̄ for each j ∈ J¬Q. By definition,
if j ∈ J¬Q, no input in Xj is queried. Since queries outside of Xj provide no information about
aj , the agent’s actions must be independent of aj . In particular, the random variables aj and yj are
independent. Combining that independence with Pr[aj = 0] = Pr[aj = 1] = 0.5 yields Pr[zj =
1] = 0.5 for all j ∈ J¬Q. Furthermore, since a1, . . . , af(T) are independent, the random variables

{zj : j ∈ J¬Q} are also independent. Since E[|J̄ |] = E[
∑

j∈J¬Q
zj] = |J¬Q|/2 ≥

f(T)− |QT |
2

,
Lemma A.2 implies that

Pr

[
|J̄ | ≤ f(T)− |QT |

4

]
≤ exp

(
−f(T)− |QT |

16

)
Part 3: |V ′

j | ≥ |Vj |/2. Since j ∈ J¬Q, the mentor is not queried on any time step t ∈ Vj , so
yt ∈ {0, 1} for all t ∈ Vj . Since the agent chooses one of two actions for each t ∈ Vj , the more
frequent action must be chosen chosen at least half of the time: yt = yj for at least half of the time
steps in Vj . Since aj ̸= yj for j ∈ J̄ , we have yt = yj ̸= aj for those time steps, so |V ′

j | ≥ |Vj |/2.

Part 4: a bound in terms of J̄ and Vj . Consider any j ∈ J̄ and t ∈ V ′
j ⊆ Vj . By definition of Vj ,

we have |mj − xt| ≤ 1
4f(T) . Then by definition of µf,a,

µf,a(xt, yt) = 1− L

(
1

2f(T)
− |xt −mj |

)
13That is, the entire set {a1, . . . , af(T), x1, . . . , xT } is mutually independent.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

≤ 1− L

(
1

2f(T)
− 1

4f(T)

)
= = 1− L

4f(T)

Now aggregating across time steps,

T∏
t=1

µf,a(xt, yt) ≤
∏
j∈J̄

∏
t∈V ′

j

µf,a(xt, yt) (µf,a(xt, yt) ∈ [0, 1] for all t)

≤
∏
j∈J̄

(
1− L

4f(T)

)|V ′
j |

(bound on µf,a(xt, yt) when t ∈ V ′
j)

≤
∏
j∈J̄

(
1− L

4f(T)

)|Vj |/2

(|V ′
j | ≥ |Vj |/2)

The last step also relies on 1− L

4f(T)
∈ [0, 1], which is due to L ≤ 1 and f(T) ≥ 1. Converting into

log space and using the standard inequality log(1 + x) ≤ x for all x ∈ R, we have

log

T∏
t=1

µf,a(xt, yt) ≤ log
∏
j∈J̄

(
1− L

4f(T)

)|Vj |/2

=
∑
j∈J̄

|Vj |
2

log

(
1− L

4f(T)

)

≤ −
∑
j∈J̄

L|Vj |
8f(T)

Part 5: putting it all together. By Lemma A.3, Part 2 of this lemma, and the union bound, with

probability at least 1 − exp
(−T
16f(T)

)
− exp

(
− f(T)−|QT |

16

)
we have

∑
j∈J̄ |Vj | ≥

T |J̄ |
4f(T)

for all

j ∈ [f(T)] and |J̄ | ≥ f(T)− |QT |
4

. Assuming those inequalities hold, we have

log

T∏
t=1

µf,a(xt, yt) ≤ −
∑
j∈J̄

L|Vj |
8f(T)

≤ − L

8f(T)
· T |J̄ |
4f(T)

≤ − L

8f(T)
· T

4f(T)
· f(T)− |QT |

4

= − LT (f(T)− |QT |)
27f(T)2

Exponentiating both sides proves the lemma.

Let α(T) = exp
(−T
16f(T)

)
+ exp

(
− f(T)−|QT |

16

)
for brevity.

Theorem 4.1. The worst-case expected regret of any algorithm with sublinear queries goes to 1 as T
goes to infinity. Formally, limT→∞ supµ,πm E[RT] = 1.

Proof. If the algorithm has sublinear queries, then there exists g(T) ∈ o(T) such that |QT | ≤ g(T)

always. Let f(T) =
√

(g(T) + 1)T . Then by Lemma A.1, g(T) ∈ o(f(T)) and f(T) ∈ o(T).
Combining this with |QT | ≤ g(T), we get limT→∞ α(T) = 0. Also, since g(T) ∈ o(f(T)), there

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

exists T0 such that |QT | ≤ g(T) ≤ f(T)/2 for all T ≥ T0. Combining this with Lemma A.4 and
noting that

∏T
t=1 µf,a(xt, yt) ≤ 1, we have

E
a∼U({0,1}f(T))

E
x∼UT ,y

T∏
t=1

µf,a(xt, yt)

≤ α(T) · 1 +
(
1− α(T)

)
exp

(
−LT (f(T)− |QT |)

27f(T)2

)
≤ α(T) +

(
1− α(T)

)
exp

(
−LTf(T)/2

27f(T)2

)
= α(T) +

(
1− α(T)

)
exp

(
− LT

28f(T)

)
whenever T ≥ T0. Since

∏T
t=1 µ

m
f,a(xt) = 1 always, we have14

sup
µ

E
x∼UT ,y

RT (x,y, µ, π
m) ≥ E

a∼U({0,1}f(T))
E

x∼UT ,y
RT (x,y, µf,a, π

m)

= E
a∼U({0,1}f(T))

E
x∼UT ,y

[
T∏

t=1

µm
f,a(xt)−

T∏
t=1

µf,a(xt, yt)

]

≥ 1− α(T)−
(
1− α(T)

)
exp

(
− LT

28f(T)

)
Therefore

lim
T→∞

sup
µ

E
x∼UT ,y

RT (x,y, µ, π
m) ≥ 1− lim

T→∞
α(T)−

(
1− lim

T→∞
α(T)

)
· exp

(
lim

T→∞
− LT

28f(T)

)
= 1− 0− (1− 0) · exp(−∞)

= 1

as required.

B PROOF OF THEOREM 5.2

B.1 CONTEXT ON LEMMA 5.4

Before diving into the main proof, we provide some context on Lemma 5.4 from Section 5:

Lemma 5.4 (Lemma 3.5 in Russo et al. (2024)). Assume Π̃ is finite. Then for any loss function
ℓ : [T]× Π̃→ [0, 1] and query probability p, HEDGEWITHQUERIES enjoys the regret bound

T∑
t=1

E[ℓ(t, πt)]−min
π̃∈Π̃

T∑
t=1

ℓ(t, π) ≤ 2 log |Π̃|
p2

where πt is the policy chosen at time t and the expectation is over the randomness of the algorithm.

Lemma 5.4 is a restatement and simplification of Lemma 3.5 in Russo et al. (2024). First, Russo
et al. (2024) parametrize their algorithm by the expected number of queries k̂ instead of the query
probability p = k̂/T . Second, Russo et al. (2024) include a second parameter k, which is the eventual
target number of queries for their unconditional query bound. In our case, an expected query bound is
sufficient, so we simply set k = k̂. Third, Russo et al. (2024) provide a second bound which is tighter
for small k; that bound is less useful for us so we omit it. Fourth, their number of actions n is equal to
|Π̃| in our setting. (Their actions correspond to policies in Π̃, not our actions in Y .) Since Russo et al.

(2024) set η = max
(

1
T

√
k̂ logn

2 , kk̂√
2T 2

)
, we end up with η = max

(√
p log |Π̃|

2T , p2

√
2

)
. Algorithm 2

provides precise pseudocode for the HEDGEWITHQUERIES algorithm to which Lemma 5.4 refers.

14Fubini’s theorem means we need not worry about the order of the expectation operators.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Algorithm 2 A variant of the Hedge algorithm which only observes losses in response to queries.

1: function HEDGEWITHQUERIES(p ∈ (0, 1], finite policy class Π̃, unknown ℓ : [T]×Π̃→ [0, 1])
2: w(π)← 1 for all π ∈ Π̃

3: η ← max
(√p log |Π̃|

2T , p2

√
2

)
4: for t from 1 to T do
5: hedgeQuery← true with probability p else false
6: if hedgeQuery then
7: Query and observe ℓ(t, π) for all π ∈ Π̃
8: ℓ∗ ← minπ∈Π̃ ℓ(t, π)

9: w(π)← w(π) · exp(−η(ℓ(t, π)− ℓ∗)) for all π ∈ Π̃
10: Select policy argminπ∈Π̃ ℓ(t, π)
11: else
12: P (π)← w(π)/

∑
π′∈Π̃ w(π′) for all π ∈ Π̃

13: Sample πt ∼ P
14: Select policy πt

B.2 MAIN PROOF

We use the following notation throughout the proof:

1. For each t ∈ [T], let Xt refer to the value of X at the start of time step t.

2. Let VT = {t ∈ [T] : πt(xt) ̸= πm(xt)} be the set of time steps where Hedge’s proposed
action doesn’t match the mentor’s. Note that |VT | upper bounds the number of mistakes the
algorithm makes (the number of mistakes could be smaller, since the algorithm sometimes
queries instead of taking action πt(xt)).

3. For X ⊆ X , let vol(X) denote the n-dimensional Lebesgue measure of X .

4. With slight abuse of notation, we will use inequalities of the form f(T) ≤ g(T) +O(h(T))
to mean that there exists a constant C such that f(T) ≤ g(T) + Ch(T).

5. We will use “Case 1” to refer to finite VC dimension and σ-smooth x and “Case 2” to refer to
finite Littlestone dimension. In Case 1, expectations are over the randomness of both x and
the algorithm, while in Case 2, expectations are over just the randomness of the algorithm.
When we need to distinguish, we use Ey to denote the expectation over randomness of the
algorithm and Ex∼D to denote the expectation over x.

Lemma B.1. Under the conditions of Theorem 5.1, Algorithm 1 satisfies

E[|VT |] ∈ O

(
d

σ
Tε log(1/ε) log T

)

Proof. Define ℓ : [T]× Π̃→ [0, 1] by ℓ(t, π) = 1(π(xt) ̸= πm(xt)), and let wh and πh
t denote the

values of w and πt respectively in HEDGEWITHQUERIES, while w and πt refer to the variables in
Algorithm 1. Then w and wh evolve in the exact same way, so the distributions of πt and πh

t coincide.
Thus by Lemma 5.4,

E
y

[
T∑

t=1

ℓ(t, πt)

]
−min

π̃∈Π̃

T∑
t=1

ℓ(t, π̃) ≤ 2 log |Π̃|
p2

= 2Tε log |Π̃|

Since Lemma 5.4 holds for any loss function, the bound above holds for any x ∈ ST , so the
bound also holds in expectation over x ∼ D (which is needed for Case 1). Next, observe that
|VT | =

∑T
t=1 1(πt(xt) ̸= πm(xt)) =

∑T
t=1 ℓ(t, πt), so

E
y
[|VT |] ≤ 2Tε log |Π̃|+min

π̃∈Π̃

T∑
t=1

1(π̃(xt) ̸= πm(xt))

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Case 1: Since Π̃ is a smooth ε-cover of Π, we have

E
x∼D

[
min
π̃∈Π̃

T∑
t=1

1(π̃(xt) ̸= πm(xt))

]
≤ E

x∼D

[
sup
π∈Π

min
π̃∈Π̃

T∑
t=1

1(π̃(xt) ̸= π(xt))

]

∈ O

(
1

σ
Tε log T

√
d log(1/ε)

)
with the first step due to πm ∈ Π and the second step due to Lemma 5.3. The last component we need
is that |Π̃| ≤ (41/ε)d by construction (and such a Π̃ is guaranteed to exist by Lemma 5.1). Combining
the above inequalities and taking the expectation over x ∼ D (in addition to the randomness of the
algorithm), we get

E
x∼D,y

[|VT |] ≤ 2Tε log |Π̃|+ E
x∼D

[
min
π̃∈Π̃

T∑
t=1

1(π̃(xt) ̸= πm(xt))

]

≤ 2dTε log(41/ε) +O

(
1

σ
Tε log T

√
d log(1/ε)

)
∈ O

(
d

σ
Tε log(1/ε) log T

)
Case 2: Since Π̃ is an adversarial cover of Π and πm ∈ Π, there exists π̃ ∈ Π̃ such that∑T

t=1 1(π̃(xt) ̸= πm(xt)) = 0. Since |Π̃| ≤ (eT/d)d (with such a Π̃ guaranteed to exist by
Lemma 5.2),

E
y
[|VT |] ≤ 2Tε log |Π̃|+min

π̃∈Π̃

T∑
t=1

1(π̃(xt) ̸= πm(xt))

≤ 2Tεd ln(eT/d)

∈ O

(
d

σ
Tε log(1/ε) log T

)
as required.

Lemma B.2. For all t ∈ [T], µ(xt, yt) ≥ µm(xt)− Lε1/n.

Proof. Fix any t ∈ [T]. If t ∈ QT , then µ(xt, yt) = µm(xt), so assume t ̸∈ QT . Let (x′, y′) =
argmin(x,y)∈Xt:πt(xt)=y ||xt − x||. Since t ̸∈ QT , we must have ||xt − x′|| ≤ ε1/n.

We have y′ = πm(x′) by construction of Xt and πt(xt) = y′ by construction of y′. Combining these
with the local generalization assumption, we get

µ(xt, yt) = µ(xt, πt(xt)) = µ(xt, π
m(x′)) ≥ µm(xt)− L||xt − x′|| ≥ µm(xt)− Lε1/n

as required.

Lemma B.3. Assume a1, . . . , aT , b1, . . . , bT ∈ [0, 1] and at ≥ bt for all t ∈ [T]. Then

T∏
t=1

at −
T∏

t=1

bt ≤
T∑

t=1

at −
T∑

t=1

bt

Proof. We proceed by induction on T . The claim is trivially satisfied for T = 1, so suppose T > 1

and assume that
∏T−1

t=1 at −
∏T−1

t=1 bt ≤
∑T−1

t=1 at −
∑T−1

t=1 bt. Then

T∑
t=1

at −
T∑

t=1

bt −
T∏

t=1

at +

T∏
t=1

bt = aT

T−1∑
t=1

at − bT

T−1∑
t=1

bt − aT

T−1∏
t=1

at + bT

T−1∏
t=1

bt

= aT

(
T−1∑
t=1

at −
T−1∏
t=1

at

)
− bT

(
T−1∑
t=1

bt −
T−1∏
t=1

bt

)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Since T > 1 and at ∈ [0, 1] for all t ∈ [T], we have
∑T−1

t=1 at ≥ a1 ≥
∑T−1

t=1 at. Thus
∑T−1

t=1 at −∏T−1
t=1 at ≥ 0. Combining this with aT ≥ bT , we get

T∑
t=1

at −
T∑

t=1

bt −
T∏

t=1

at +

T∏
t=1

bt = aT

(
T−1∑
t=1

at −
T−1∏
t=1

at

)
− bT

(
T−1∑
t=1

bt −
T−1∏
t=1

bt

)

≥ bT

(
T−1∑
t=1

at −
T−1∏
t=1

at

)
− bT

(
T−1∑
t=1

bt −
T−1∏
t=1

bt

)

= bT

(
T−1∑
t=1

at −
T−1∏
t=1

at −
T−1∑
t=1

bt +

T−1∏
t=1

bt

)
≥ 0

The last step is due to bT ≥ 0 and our assumption of
∏T−1

t=1 at −
∏T−1

t=1 bt ≤
∑T−1

t=1 at −
∑T−1

t=1 bt.

Lemma B.4. Under the conditions of Theorem 5.1, Algorithm 1 satisfies

E [RT] ∈ O

(
dL

σ
Tε1+1/n log(1/ε) log T

)
E

[
T∑

t=1

µm(xt)−
T∑

t=1

µ(xt, yt)

]
∈ O

(
dL

σ
Tε1+1/n log(1/ε) log T

)

Proof. We first claim that yt = πm(xt) for all t ̸∈ VT . If t ∈ QT , the claim is immediate; if not, we
have yt = πt(xt), and πt(xt) = πm(xt) due to t ̸∈ VT . Thus min(µm(xt), µ(xt, yt)) = µm(xt) for
t ̸∈ VT .

We next claim that µm(xt)−min(µm(xt), µ(xt, yt)) ≤ Lε1/n for all t ∈ [T]. If µ(xt, yt) ≤ µm(xt),
this follows from Lemma B.2. If µ(xt, yt) > µm(xt), then µm(xt) − min(µm(xt), µ(xt, yt)) =
0 ≤ Lε1/n. Therefore

T∑
t=1

(
µm(xt)−min(µm(xt), µ(xt, yt))

)
≤
∑
t∈VT

(
µm(xt)−min(µm(xt), µ(xt, yt))

)
≤
∑
t∈VT

Lε1/n

= |VT |Lε1/n

Now let at = µm(xt) and bt = min(µm(xt), µ(xt, yt)) for all t ∈ [T]. Then by Lemma B.3,

T∏
t=1

µm(xt)−
T∏

t=1

min(µm(xt), µ(xt, yt)) ≤
T∑

t=1

(
µm(xt)−min(µm(xt), µ(xt, yt))

)
Since µ(xt, yt) ≥ min(µm(xt), µ(xt, yt)) for all t ∈ [T], we have

RT =

T∏
t=1

µm(xt)−
T∏

t=1

µ(xt, yt)

≤
T∑

t=1

(
µm(xt)−min(µm(xt), µ(xt, yt))

)
≤ |VT |Lε1/n

Since we also have
∑T

t=1 µ
m(xt)−

∑T
t=1 µ(xt, yt) ≤

∑T
t=1(µ

m(xt)−min(µm(xt), µ(xt, yt))),

E[RT] ≤ Lε1/n E
[
|VT |

]
20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

E

[
T∑

t=1

µm(xt)−
T∑

t=1

µ(xt, yt)

]
≤ Lε1/n E

[
|VT |

]
Applying Lemma B.1 completes the proof.

Definition B.1. Let (K, || · ||) be a normed vector space and let δ > 0. Then X ⊆ K is a δ-packing
of K if for all x, y ∈ X , ||x− y|| > δ. The δ-packing number of K, denotedM(K, || · ||, δ), is the
maximum cardinality of any δ-packing of K.

In this paper, we only consider the Euclidean distance norm, so we just write M(K, || · ||, δ) =
M(K, δ).

Lemma B.5 (Theorem 14.2 in Wu (2020)). If K ⊂ Rn is convex, bounded, and contains a ball with
radius δ > 0, then

M(K, δ) ≤ 3n vol(K)

δn vol(B)

where B is a unit ball.

Lemma B.6 (Jung’s Theorem (Jung, 1901)). If X ⊂ Rn is compact, then there exists a closed ball
with radius at most diam(X)

√ n

2(n+ 1)
containing X .

Lemma B.7. Under the conditions of Theorem 5.1, Algorithm 1 satisfies

E[|QT |] ∈ O

(√
T

ε
+

d

σ
Tε log(1/ε) log T +

diam(x)n

ε

)

Proof. If t ∈ QT , then either hedgeQuery = true or min(x,y)∈Xt:πt(xt)=y ||xt − x|| > r. The
expected number of time steps with hedgeQuery = true is pT =

√
T/ε, so let X̂ = {xt :

t ∈ QT and min(x,y)∈Xt:πt(xt)=y ||xt − x|| > r)}. We further subdivide X̂ into X̂1 = {xt ∈ X̂ :

πt(xt) ̸= πm(xt)} and X̂2 = {xt ∈ X̂ : πt(xt) = πm(xt)}. Since X̂1 ⊆ VT , Lemma B.1 implies
that E[|X̂1|] ∈ O

(
d
σTε log(1/ε) log T

)
.

Next, fix an y ∈ Y and let Xy = {x ∈ x : πm(x) = y} be the set of observed inputs which share
a mentor action. We claim that X̂2 ∩ Xy is a packing of Xy. Suppose instead that there exists
x, x′ ∈ X̂2 ∩ Xy, with ||x − x′|| ≤ ε1/n. WLOG assume x was queried after x′ and let t be the
time step on which x was queried. Then (x′, πm(x′)) ∈ Xt. Also, x, x′ ∈ X̂2 ∩Xy implies that and
πt(xt) = πm(xt) = y = πm(x′). Therefore

min
(x′′,y′′)∈Xt:y′′=πt(xt)

||xt − x′′|| ≤ ||xt − x′|| ≤ ε1/n

which contradicts xt ∈ X̂ . Thus X̂2 ∩Xy is a ε1/n-packing of Xy .

By Lemma B.6, there exists a ball B1 of diameter diam(x)
√

n
2(n+1) which contains x. Let R =

diam(x)
√

n
8(n+1) denote the radius of B1. Let B2 be the ball with the same center as B1 but with

radius max(R, ε1/n). Since Xy ⊂ x ⊂ B1 ⊂ B2, X̂2 ∩Xy is also a ε1/n-packing of B2. Also, B2

must contain a ball of radius ε1/n, so Lemma B.5 implies that

|X̂2 ∩Xy| ≤M(B2, ε
1/n)

≤ 3n vol(B2)

ε vol(B)

=
(
max(R, ε1/n)

)n 3n vol(B)

ε vol(B)

= max

(
diam(x)n

(
n

8(n+ 1)

)n/2

, ε

)
3n

ε

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

≤ O

(
diam(x)n

ε
+ 1

)
(The +1 is necessary for now since diam(x) could theoretically be zero.) Therefore

E[|QT |] =
√

T

ε
+ E[|X̂|]

=

√
T

ε
+ E[|X̂1|] + E

∑
y∈Y
|X̂2 ∩Xy|


≤
√

T

ε
+O

(
d

σ
Tε log(1/ε) log T

)
+
∑
y∈Y

O

(
diam(x)n

ε
+ 1

)

≤
√

T

ε
+O

(
d

σ
Tε log(1/ε) log T

)
+ |Y| ·O

(
diam(x)n

ε
+ 1

)
≤ O

(√
T

ε
+

d

σ
Tε log(1/ε) log T +

diam(x)n

ε

)
as required.

Theorem 5.1 follows from Lemmas B.4 and B.7:
Theorem 5.1. Let Y = {0, 1}. Assume πm ∈ Π where either (1) Π has finite VC dimension d, x
is σ-smooth, and εT log T > 12σd log(4e2/ε) or (2) Π has finite Littlestone dimension d. Then for
any T ∈ N and ε > 0, Algorithm 1 satisfies

E [RT] ∈ O

(
dL

σ
Tε1+1/n log(1/ε) log T

)
E[|QT |] ∈ O

(√
T

ε
+

d

σ
Tε log(1/ε) log T +

diam(x)n

ε

)

We then perform some arithmetic to get Theorem 5.2:
Theorem 5.2. Let Y = {0, 1}. Assume πm ∈ Π where either (1) Π has finite VC dimension d and
x is σ-smooth or (2) Π has finite Littlestone dimension d. Then for any T ∈ N, Algorithm 1 with
ε = T

−2n
2n+1 satisfies

E [RT] ∈ O

(
dL

σ
T

−1
2n+1 log T

)
E[|QT |] ∈ O

(
T

4n+1
4n+2

(
d

σ
log T + diam(x)n

))
Proof. We have

E [RT] ∈ O

(
dL

σ
T 1− 2n

2n+1−
2

2n+1 log(1/ε) log T

)
= O

(
dL

σ
T

−1
2n+1 log T

)
and

E[|QT |] ∈ O

(√
T 1+ 2n

2n+1 +
d

σ
T 1− −2n

2n+1 log(T
2n

2n+1) log T + T
2n

2n+1 diam(x)n
)

= O

(
T

2n+0.5
2n+1 +

d

σ
T

1
2n+1 log T + T

2n
2n+1 diam(x)n

)
≤ O

(
T

4n+1
4n+2

(d
σ
log T + diam(x)n

))

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

If we instead use the second bound from Lemma B.4, the same arithmetic gives us:

Theorem 5.3. Let Y = {0, 1}. Assume πm ∈ Π where either (1) Π has finite VC dimension d and
x is σ-smooth or (2) Π has finite Littlestone dimension d. Then for any T ∈ N, Algorithm 1 with
ε = T

−2n
2n+1 satisfies

E

[
T∑

t=1

µm(xt)−
T∑

t=1

µ(xt, yt)

]
∈ O

(
dL

σ
T

−1
2n+1 log T

)

B.3 ADAPTIVE ADVERSARIES

If st is allowed to depend on the events of prior time steps, we say that the adversary is adaptive.
In contrast, a non-adaptive or “oblivious” adversary must choose the entire input upfront. This
distinction is not relevant for deterministic algorithms, since an adversary knows exactly how the
algorithm will behave for any input. In other words, the adversary gains no new information during
the execution of the algorithm. For randomized algorithms, an adaptive adversary can base the choice
of st on the results of randomization on previous time steps (but not on the current time step), while
an oblivious adversary cannot.

In the standard online learning model, Hedge guarantees sublinear regret against both oblivious
and adaptive adversaries (Chapter 5 of Slivkins et al. (2019) or Chapter 21 of Shalev-Shwartz &
Ben-David (2014)). However, Russo et al. (2024) state their result only for oblivious adversaries. In
order for our overall proof of Theorem 5.1 to hold for adaptive adversaries, Lemma 5.4 (Lemma 3.5
in Russo et al. (2024)) must also hold for adaptive adversaries. In this section, we argue why the
proof of Lemma 5.4 (Lemma 3.5 in their paper) goes through for adaptive adversaries as well. For
this rest of Appendix B.3, lemma numbers refer to the numbering in Russo et al. (2024).

The importance of independent queries. Recall from Appendix B.1 that Russo et al. (2024) allow
two separate parameters k and k̂, which we unify for simplicity. Recall also that Lemma 3.5 refers to
the variant of Hedge which queries with probability p = k̂/T = k/T independently on each time
step (Algorithm 2. More precisely, on each time step t, the algorithm samples a Bernoulli random
variable Xt ∼ Ber(p) and queries if Xt = 1. The key idea is that Xt is independent of events on
previous time steps. Thus even conditioning on the history up to time t, for any for any random
variable Yt we can write

E[Yt] = (1− p)E[Yt | Xt = 0] + pE[Yt | Xt = 1]

This insight immediately extends Observation 3.3 to adaptive adversaries (with the minor modification
that queries are now issued independently with probability p on each time step instead of issuing k
uniformly distributed queries). Specifically, using the notation from Russo et al. (2024) where it
is the action chosen at time t, i0t is the action chosen at time t if a query is not issued, and i∗t is the
optimal action at time t, we have

E[ℓt(it)] = (1− p)E[ℓt(i0t)] + pE[ℓt(i∗t)] =
(
1− k

T

)
E[ℓt(i0t)] +

k

T
E[ℓt(i∗t)]

The same logic applies to other statements like E[ℓ̂t(i) | X≤t−1, I≤t−1] = ℓt(i) − ℓt(i
∗
t) and

immediately extends those statements to adaptive adversaries as well.

Applying Observation 3.3. The other tricky part of the proof is applying Observation 3.3 using a new
loss function ℓ̂ defined by ℓ̂t =

T
k̂
(ℓt(i)− ℓt(i

∗
t))1(Xt = 1). To do so, we must argue that standard

Hedge run on ℓ̂ is the “counterpart without queries” of HEDGEWITHQUERIES. Specifically, both
algorithms must have the same weight vectors on every time step, and the only difference should be
that HEDGEWITHQUERIES takes the optimal action on each time step independently with probability
p (and otherwise behaves the same as standard Hedge). On time steps with Xt = 0, standard Hedge
observes ℓ̂t(i) = 0 for all actions i and thus makes no updates, and HEDGEWITHQUERIES makes
no updates by definition. On time steps with Xt = 1, both algorithms perform the typical updates
wt+1(i) = wt(i) · exp(−η(ℓ̂t(i)− ℓ̂t(i

∗
t))). Thus the weight vectors are the same for both algorithms

on every time step. Furthermore, HEDGEWITHQUERIES takes the optimal action at time t iff Xt = 1,

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Algorithm 3 extends Algorithm 1 to many actions.
1: function AVOIDCATASTROPHEMANYACTIONS(T ∈ N, ε ∈ R>0, d ∈ N, policy class Π)
2: for y ∈ Y do
3: if Π has VC dimension d then
4: Π̃y ← any smooth ε-cover of Π of size at most (41/ε)d
5: else if Π has Littlestone dimension d then
6: Π̃y ← any adversarial ε-cover of size at most (eT/d)d

7: for t from 1 to T do
8: for y ∈ Y do
9: byt ← action from running one step of Algorithm 1 on Πy (with the same T, ε, d)

10: if byt ̸= ỹ ∀y ∈ Y and ∃a ∈ Y : byt = 1 then
11: Take any action y with byt = 1
12: else
13: Query the mentor

which occurs independently with probability p on each time step. Thus standard Hedge run on ℓ̂ is
the “counterpart without queries” of HEDGEWITHQUERIES.

The rest of the proof. The other elements of the proof of Lemma 3.5 are as follows:

1. Lemma 3.1, which analyzes the standard version of Hedge (i.e., no queries and losses are
observed on every time step).

2. Applying Lemma 3.1 to a ℓ̂.

3. Arithmetic and rearranging terms.

The proof of Lemma 3.1 relies on simple arithmetic properties of the Hedge weights. Regardless
of the adversary’s behavior, ℓ̂ is a well-defined loss function, so Lemma 3.1 can be applied. Step 3
clearly has no dependence on the type of adversary. Thus we conclude that Lemma 3.5 extends to
adaptive adversaries.

C GENERALIZING THEOREM 5.2 TO MANY ACTIONS

We use the standard “one versus rest” reduction (see, e.g., Chapter 29 of Shalev-Shwartz & Ben-David
(2014)). For each action y, we will learn a binary classifier which predicts whether action y is the
mentor’s action. Formally, for each y ∈ Y , define the policy class Πy = {πy : π ∈ Π and πy(x) =
1(π(x) = y)) ∀x ∈ X}. Informally, for each policy π : X → Y in Π, there exists a policy
πy : X → {0, 1} in Πy such that πy(x) = 1(π(x) = y) for all x ∈ X .

Algorithm 3 runs one copy of our binary-action algorithm Algorithm 1 for each action y ∈ Y . At
each time step t, the copy for action y returns an action byt , with byt = 1 indicating a belief that
y = πm(xt) and byt = 0 indicating a belief that y ̸= πm(xt). (Note that byt = ỹ is also possible,
indicating that the mentor was queried.)

The key idea is that if byt is correct for each action y, there will be exactly one y such that byt = 1,
and specifically it will be y = πm(xt). Thus we are guaranteed to take the mentor’s action on such
time steps. The analysis for Theorem 5.2 (specifically, Lemma B.1) bounds the number of time steps
when a given copy of Algorithm 1 is incorrect, so by the union bound, the number of time steps
where any copy is incorrect is |Y| times that bound. That in turn bounds the number of time steps
where Algorithm 3 takes an action other than the mentor’s. Similarly, the number of queries made by
Algorithm 3 is at most |Y| times the bound from Theorem 5.2. The result is the following theorem:

Theorem C.1. Assume πm ∈ Π where either (1) Πy has finite VC dimension d and x is σ-smooth or
(2) Πy has finite Littlestone dimension d for all y ∈ Y . Then for any T ∈ N, Algorithm 3 with T and
ε = T

−2n
2n+1 satisfies

E [RT] ∈ O

(
|Y|dL
σ

T
−1

2n+1 log T

)

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

E[|QT |] ∈ O

(
|Y|T

4n+1
4n+2

(
d

σ
log T + diam(x)n

))
We use the following terminology and notation in the proof of Theorem C.1:

1. We refer to the copy of Algorithm 1 running on Πy as “copy y of Algorithm 1”.

2. Let πy
t and Xy

t refer to the values of πt and Xt for copy y of Algorithm 1.

3. Let πmy : X → {0, 1} be the policy defined by πmy(x) = 1(πm(xt) = y). Note that
querying the mentor tells the agent πm(xt), which allows the agent to compute πmy(xt):
this is necessary when Algorithm 1 queries while running on some Πy .

4. Let V y
T = {t ∈ [T] : byt ̸= πmy(xt)} be the set of time steps where πy

t does not correctly
determine whether the mentor would take action y and let VT = {t ∈ [T] : yt ̸= πm(xt)}
be the set of time steps where the agent’s action doesn’t match the mentor’s.

Lemma C.1. We have |VT | ≤
∑

y∈Y |V
y
T |.

Proof. We claim that VT ⊆ ∪y∈YV
y
T . Suppose the opposite: then there exists t ∈ VT such

that byt = πmy(xt) for all y ∈ Y . Since πm(xt) ∈ Y , there is exactly one y ∈ Y such that
1(πm(xt) = y) = πmy(xt) = byt = 1. Specifically, this holds for y = πm(xt). But then
Algorithm 3 takes action min{y ∈ Y : byt = 1} = πm(xt), which contradicts t ∈ VT . Therefore
VT ⊆ ∪y∈YV

y
T , and applying the union bound completes the proof.

Lemma C.2. For all t ∈ [T], µm(xt)− µ(xt, yt) ≤ Lε1/n.

Proof. The argument is similar to the proof of Lemma B.2. If µm(xt) ̸= µ(xt, yt), then yt = y for
some y ∈ Y where byt = 1. Therefore copy y of Algorithm 1 did not query at time t and πy

t (xt) = 1.
Let (x′, y′) = argmin(x,y)∈Xy

t :π
y
t (xt)=y ||xt − x||. Then ||xt − x′|| ≤ ε1/n and y′ = πy

t (xt) = 1.

By construction of Xy
t , y′ = πmy(x′) so πmy(x′) = 1 which implies πm(x′) = y. Then by the local

generalization assumption,

µ(xt, yt) = µ(xt, y) = µ(xt, π
m(x′)) ≥ µm(xt)− L||xt − x′|| ≥ µm(xt)− Lε1/n

as required.

Theorem C.1. Assume πm ∈ Π where either (1) Πy has finite VC dimension d and x is σ-smooth or
(2) Πy has finite Littlestone dimension d for all y ∈ Y . Then for any T ∈ N, Algorithm 3 with T and
ε = T

−2n
2n+1 satisfies

E [RT] ∈ O

(
|Y|dL
σ

T
−1

2n+1 log T

)
E[|QT |] ∈ O

(
|Y|T

4n+1
4n+2

(
d

σ
log T + diam(x)n

))

Proof. Theorem 5.2 implies that each copy of Algorithm 1 makes O
(
T

4n+1
4n+2

(
d
σ log T + diam(x)n

))
queries in expectation, so by linearity of expectation, the expected number of queries made by
Algorithm 3 is O

(
|Y|T

4n+1
4n+2

(
d
σ log T + diam(x)n

))
. Using the same argument as in the proof of

Lemma B.7 (with Lemma C.2 replacing Lemma B.2), we get

RT =

T∏
t=1

µm(xt)−
T∏

t=1

µ(xt, yt)

≤
T∑

t=1

(
µm(xt)−min(µm(xt), µ(xt, yt))

)
≤ |VT |Lε1/n

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Then by Lemma C.1, RT ≤ Lε1/n
∑

y∈Y |V
y
T |. Taking the expectation and applying Lemma B.1 to

each V y
T gives us

E[RT] ≤ Lε1/n
∑
y∈Y

O

(
d

σ
Tε log(1/ε) log T

)
= O

(
|Y|Lε1/n d

σ
Tε log(1/ε) log T

)
as required.

D THERE EXIST POLICY CLASSES WHICH ARE LEARNABLE IN OUR SETTING
BUT NOT IN THE STANDARD ONLINE MODEL

This section presents another algorithm with subconstant regret and sublinear queries, but under
different assumptions. The primary takeaway here is that our algorithm can handle the class of
thresholds on [0, 1], which is known to have infinite Littlestone dimension and thus be hard in the
standard online learning model. (Example 21.4 in Shalev-Shwartz & Ben-David (2014)).

Specifically, we assume a 1D input space and we allow the input sequence to be fully adversarial
chosen. Instead of VC/Littlestone dimension, we consider the following notion of simplicity:
Definition D.1. Given a mentor policy πm, partition the input space X into intervals such that all
inputs within each interval share the same mentor action. Let {X1, . . . , Xk} be a partition that
minimizes the number of intervals. We call each Xj a segment. Let f(πm) denote the number of
segments in πm.

Bounding the number of segments is similar conceptually to VC dimension in that it limits the ability
of the policy class to realize arbitrary combinations of labels (i.e., mentor actionx) on x. For example,
if Π is the class of thresholds on [0, 1], every π ∈ Π has at most two segments, and thus the positive
result in this section will apply. This demonstrates the existence of policy classes which are learnable
in our setting but not learnable in the standard online learning model, meaning that the two settings
do not exactly coincide.

We prove the following result:
Theorem D.2. For any x ∈ X T , any πm with f(πm) ≤ K, and any function g : N→ N, Algorithm 4

makes at most (diam(x) + 4)g(T) queries and satisfies RT ≤
2LKT

g(T)2
.

Choosing g(T) = T c for c ∈ (1/2, 1) is sufficient to subconstant regret and sublinear queries:
Theorem D.3. For any c ∈ (1/2, 1), Algorithm 4 with g(T) = T c makes O(T c(diam(x) + 1))
queries and satisfies

lim
T→∞

sup
x∈XT

sup
µ

sup
πm:f(πm)≤K

RT = 0

Our algorithm does not need to know L or the number of segments; it only needs to know T .

D.1 INTUITION BEHIND THE ALGORITHM

The algorithm maintains a set of buckets which partition the observed portion of the input space.
Each bucket’s length determines the maximum loss in payoff we will allow from that subset of the
input space. As long as the bucket contains a query from a prior time step, local generalization allows
us to bound µm(xt)− µ(xt, yt) based on the length of the bucket containing xt. We always query if
the bucket does not contain a prior query

The granularity of the buckets is controlled by a function g, with the initial buckets having length
1/g(T). Since we can expect one query per bucket, we need g(T) ∈ o(T) to ensure sublinear queries.

Regardless of the bucket length, the adversary can still place multiple segments in the same bucket
B. A single query only tells us the optimal action for one of those segments, so we risk a payoff as
bad as µm(xt)−O(len(B)) whenever we choose not to query. We can endure a limited number of
such payoffs, but if we never query again in that bucket, we may suffer Θ(T) such payoffs. Letting
µm(xt) = 1 for simplicity, that would lead to

∏T
t=1 µ(xt, yt) ≤

(
1− 1

O(g(T))

)Θ(T)
, which converges

to 0 (i.e., guaranteed catastrophe) when g(T) ∈ o(T).

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Algorithm 4 achieves subconstant regret when the mentor’s policy has a bounded number of segments.
1: function AVOIDCATASTROPHE(T ∈ N, g : N→ N)
2: XQ ← ∅ ▷ Previously queried inputs
3: π ← ∅ ▷ Records πm(x) for each x ∈ XQ

4: B ← ∅ ▷ The set of active buckets
5: for t from 1 to T do
6: EVALUATEINPUT(xt)

7: function EVALUATEINPUT(x ∈ X)
8: if s ̸∈ B for all B ∈ B then ▷ No bucket containing x: create a new bucket and try again
9: B ←

[
j−1
g(T) ,

j
g(T)

]
for j ∈ Z such that x ∈ B

10: B ← B ∪ {B}
11: nB ← 0 ▷ Number of time steps that have used B
12: EVALUATEINPUT(x)
13: else
14: B ← any bucket containing x
15: if XQ ∩B = ∅ then ▷ No queries in this bucket
16: Query mentor and observe πm(x)
17: π(x)← πm(x)
18: XQ ← XQ ∪ {x}
19: nB ← nB + 1
20: else if nB < T/g(T) then ▷ Bucket has a query and isn’t full: take that action
21: Let x′ ∈ XQ ∩B
22: Take action π(x′)
23: nB ← nB + 1
24: else ▷ Bucket is full: split bucket and try again
25: B = [a, b]

26: (B1, B2)←
([

a, a+b
2

]
,
[
a+b
2 , b

])
27: (xB1

, xB2
)← (0, 0)

28: B ← B ∪ {B1, B2} \B
29: EVALUATEINPUT(x)

This failure mode suggests a natural countermeasure: if we start to suffer significant (potential)
losses in the same bucket, then we should probably query there again. One way to structure these
supplementary queries is by splitting the bucket in half when enough time steps have involved that
bucket. It turns out that splitting after T/g(T) time steps is a sweet spot.

D.2 NOTATION FOR THE PROOF

We will use the following notation throughout the proof of Theorem D.2:

• Let VT = {t ∈ [T] : µ(xt, yt) < µm(xt)} be the set of time steps with a suboptimal payoff.
• Let Bt be the bucket that is used on time step t (as defined on line 14 of Algorithm 4).
• Let d(B) be the depth of bucket B

– Buckets created on line 9 are depth 0.
– We refer to B1, B2 created on line 26 as the children of the bucket B defined on line

14.
– If B′ is the child of B, d(B′) = d(B) + 1.

– Note that len(B) =
1

g(T)2d(B)
.

• Viewing the set of buckets are a binary tree defined by the “child” relation, we use the terms
“ancestor” and ”descendant” in accordance with their standard tree definitions.

• Let BV = {B : ∃t ∈ VT s.t. Bt = B} be the set of buckets that ever produced a suboptimal
payoff.

• Let B′V = {B ∈ BV : no descendant of B is in BV }.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

D.3 PROOF ROADMAP

The proof proceeds in the following steps:

1. Bound the total number of buckets and therefore the total number of queries (Lemma D.1).

2. Bound the suboptimality on a single time step based on the bucket length and L
(Lemma D.2).

3. Bound the sum of bucket lengths on time steps where we make a mistake (Lemma D.4),
with Lemma D.3 as an intermediate step. This captures the total amount of suboptimality.

4. As in the proof of Theorem 5.2, Lemma B.3 transforms the multiplicative objective into an
additive form. Lemma D.5 bounds the additive objective using Lemmas D.2 and D.4.

5. Combining Lemmas D.5 and B.3 bounds the regret (Lemma D.6).

6. Theorem D.2 directly follows from Lemmas D.1 and D.6.

D.4 PROOF

Lemma D.1. Algorithm 4 performs at most (diam(x) + 4)g(T) queries.

Proof. Algorithm 4 performs at most one query per bucket, so the total number of queries is bounded
by the total number of buckets. There are two ways to create a bucket: from scratch (line 9), or by
splitting an existing bucket (line 26).

Since depth 0 buckets overlap only at their boundaries, and each depth 0 bucket has length 1/g(T),
at most g(T)maxt,t′∈[T] |xt − xt′ | = g(T) diam(x) depth 0 buckets are subsets of the interval
[mint∈[T] xt,maxt∈[T] xt]. At most two depth 0 buckets are not subsets of that interval (one at each
end), so the total number of depth 0 buckets is at most g(T) diam(x) + 2.

We split a bucket B when nB reaches T/g(T), which creates two new buckets. Since each time
step increments nB for a single bucket B, and there are a total of T time steps, the total number of
buckets created via splitting is at most

2T

T/g(T)
= 2g(T). Therefore the total number of buckets ever

in existence is (diam(x) + 2)g(T) + 2 ≤ (diam(x) + 4)g(T), so Algorithm 4 performs at most
(diam(x) + 4)g(T) queries.

Lemma D.2. For each t ∈ [T], µ(xt, yt) ≥ µm(xt)− L len(Bt).

Proof. If we query the mentor at time t, µ(xt, yt) = µm(xt). Thus assume we do not query the
mentor at time t: then there exists x′ ∈ Bt (as defined on line 21 of Algorithm 4) such that yt =
π(x′) = πm(x′). Since xt and x′ are both in Bt, |xt−x′| ≤ len(Bt). Then by the local generalization
assumption, µ(xt, yt) = µ(xt, π

m(x′)) ≥ µm(xt)− L||xt − x′|| ≥ µm(xt)− L len(Bt).

Lemma D.3. If πm has at most K segments, |B′V | ≤ K.

Proof. Now consider any B ∈ B′V . By definition of B′V , there exists t ∈ VT such that xt ∈ B. Then
there exists x′ ∈ B (as defined in Algorithm 4) such that yt = π(x′) = πm(x′). Since t ∈ VT ,
we have πm(xt) ̸= yt = πm(x′). Thus xt and x′ are in different segments, but are both in B.
Therefore any B ∈ B′

V must intersect at least two segments. Since B is an interval, if it intersects
two segments, it must intersect two adjacent segments Xj and Xj+1. Furthermore, B must contain
an open neighborhood centered on the boundary between Xj and Xj+1.

Now consider some B′ ∈ B′V with B ̸= B′. We |B ∩B′| ≤ 1: otherwise one must be the descendant
of the other, which contradicts the definition of B′V . Suppose B′ also intersects both Xj and Xj+1:
since B′ is also an interval, B′ must also contain an open neighborhood centered on the boundary
between those two segments. But then |B ∩B′| > 1, which is a contradiction.

Therefore any pair of adjacent segments Xj and Xj+1, there is at most one bucket in B′V which
contains an open neighborhood around their boundary. Since there are at most K−1 pairs of adjacent
segments, we have |B′V | ≤ K − 1 ≤ K.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Lemma D.4. We have
∑

t∈VT

len(Bt) ≤
2KT

g(T)2
.

Proof. For every t ∈ VT , we have Bt = B for some B ∈ BV , so∑
t∈VT

len(Bt) =
∑

B∈BV

∑
t∈VT :B=Bt

len(Bt)

Next, observe that every B ∈ BV \ B′
V must have a descendent in B′V : otherwise we would have

B ∈ B′V . Let A(B) denote the set of ancestors of B, plus B itself. Then we can write∑
t∈VT

len(Bt) ≤
∑

B′∈B′
V

∑
B∈A(B′)

∑
t∈VT :B=Bt

len(Bt)

=
∑

B′∈B′
V

∑
B∈A(B′)

|{t ∈ VT : B = Bt}| · len(Bt)

For any bucket B, the number of time steps t with B = Bt is at most T/g(T). Also recall that
len(B) =

1

g(T)2d(B)
. Therefore∑
B∈A(B′)

|{t ∈ VT : B = Bt}|
g(T)2d(B)

≤ T

g(T)2

∑
B∈A(B′)

1

2d(B)

=
T

g(T)2

d(B′)∑
d=0

1

2d
≤ T

g(T)2

∞∑
d=0

1

2d
=

2T

g(T)2

Then by Lemma D.3, ∑
t∈VT

len(Bt) ≤
∑

B′∈B′
V

2T

g(T)2
=

2T |B′V |
g(T)2

≤ 2KT

g(T)2

as claimed.

Lemma D.5. Under the conditions of Theorem D.2, Algorithm 4 satisfies
T∑

t=1

(
µm(xt)−min(µm(xt), µ(xt, yt))

)
≤ 2LKT

g(T)2

Proof. For t ̸∈ VT we have min(µm(xt), µ(xt, yt)) = µm(xt) by definition, and Lemma D.2
implies that min(µm(xt), µ(xt, yt)) ≥ L len(Bt) for all t ∈ [T]. Thus
T∑

t=1

(
µm(xt)−min(µm(xt), µ(xt, yt))

)
≤
∑
t∈VT

(
µm(xt)−min(µm(xt), µ(xt, yt))

)
≤ L

∑
t∈VT

len(Bt)

Then by Lemma D.4,
T∑

t=1

(
µm(xt)−min(µm(xt), µ(xt, yt))

)
≤ 2LKT

g(T)2

as required.

Lemma D.6. Under the conditions of Theorem D.2, Algorithm 4 satisfies RT ≤ 2LKT
g(T)2 .

Proof. Let at = µm(xt) and bt = min(µm(xt), µ(xt, yt)) for all t ∈ [T]. Then by Lemma B.3,
T∏

t=1

µm(xt)−
T∏

t=1

min(µm(xt), µ(xt, yt)) ≤
T∑

t=1

(
µm(xt)−min(µm(xt), µ(xt, yt))

)
Since µ(xt, yt) ≥ min(µm(xt), µ(xt, yt)) for all t ∈ [T], we have

RT =

T∏
t=1

µm(xt)−
T∏

t=1

µ(xt, yt) ≤
T∑

t=1

(
µm(xt)−min(µm(xt), µ(xt, yt))

)
Applying Lemma D.5 completes the proof.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Theorem D.2 follows from Lemma D.1 and Lemma D.6.

E OTHER PROOFS

Proposition E.1 states that Lipschitz continuity implies local generalization when the mentor is
optimal.
Proposition E.1. Assume that for all x, x′ ∈ X and y ∈ Y , |µ(x, a)− µ(x′, a)| ≤ L||x− x′||. Also
assume that µ(x, πm(x)) = maxy∈Y µ(x, y) for all x ∈ X . Then πm satisfies local generalization
with constant 2L.

Proof. For any x, x′ ∈ X , we have

µ(x, πm(x′)) ≥ µ(x′, πm(x′))− L||x− x′|| (Lipschitz continuity of µ)

≥ µ(x′, πm(x))− L||x− x′|| (πm is optimal for x′)

≥ µ(x, πm(x))− 2L||x− x′|| (Lipschitz continuity of µ again)

= µm(x)− 2L||x− x′|| (Definition of µm(x))

Since πm is optimal for x, we have

µm(x) + 2L||x− x′|| ≥ µm(x) ≥ µ(x, πm(x′))

Thus −2L||x−x′|| ≤ µ(x, πm(x′))−µm(x) ≤ 2L||x−x′||. This is equivalent to |µ(x, πm(x′))−
µm(x)| ≤ 2L||x− x′||, completing the proof.

Proposition E.2 states that the achievability of subconstant regret does not depend on whether we
require expected sublinear queries or worst-case sublinear queries.
Proposition E.2. Suppose an algorithm satisfies limT→∞ supµ,πm E[RT] = 0 and
supµ,πm E[|QT |] ∈ o(T). Then there exists h : N → N such that (1) h(T) ∈ o(T) and (2)
if the algorithm is modified to simply stop querying if the number of queries reaches h(T), the
algorithm still satisfies limT→∞ supµ,πm E[RT] = 0.

Proof. We use QT , RT to refer to the queries and regret of the original algorithm, and Q′
T , R

′
T to

refer to the queries and regret of the modified algorithm.

Since supµ,πm E[|QT |] ∈ o(T), there exists g : N → N such that supµ,πm E[|QT |] ≤ g(T) and
g(T) ∈ o(T). Let h(T) =

√
g(T)T ; then h(T) ∈ o(T) by Lemma A.1. Markov’s inequality implies

that

Pr
[
|QT | > h(T)

]
≤ E[|QT |]

h(T)
≤ g(T)√

g(T)T
=

√
g(T)

T

Let ξ denote the event that at some point, the original algorithm would query, but the modified
algorithm cannot because |Q′

T | = h(T). Then Pr[ξ] ≤ Pr[|QT | > h(T)] (the inequality is because
the modified algorithm might not want to query more anyway). Also note that the algorithms are
equivalent if ξ does not occur, so E[R′

T | ¬ξ] = E[RT]. Hence

E[R′
T] = E[R′

T | ¬ξ] Pr[¬ξ] + E[R′
T | ξ] Pr[ξ]

≤E[RT] · 1 + 1 · Pr[ξ]

≤ E[RT] +

√
g(T)

T

Since g(T) ∈ o(T), we get

lim
T→∞

sup
µ,πm

E[R′
T] ≤ lim

T→∞
sup
µ,πm

(
E[RT] +

√
g(T)

T

)

= lim
T→∞

sup
µ,πm

E[RT] + lim
T→∞

√
g(T)

T

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

= 0

as required.

Theorem E.3 shows that avoiding catastrophe is impossible without local generalization, even when x
is σ-smooth and Π has finite VC dimension. The first insight is that without local generalization, we
can define µ(x, y) = 1(y = πm(x)) so that a single mistake causes

∏T
t=1 µ(xt, yt) = 0. To lower

bound Pr
[∏T

t=1 µ(xt, yt) = 0
]
, we use a similar approach to the proof of Theorem 4.1: divide

X = [0, 1] into f(T) independent sections with |QT | << f(T) << T , so that the agent can only
query a small fraction of these sections. However, the proof of Theorem E.3 is a bit easier, since we
only need the agent to make a single mistake.

The proof of Theorem E.3 assumes sublinear queries unconditionally, but recall from Proposition E.2
that the distinction between worst-case sublinear queries and expected sublinear queries is not
significant.
Theorem E.3. Let X = [0, 1] and Y = {0, 1}. Assume each input is sampled i.i.d. from the
uniform distribution on X and define the mentor policy class by the set of intervals within X , i.e.,
Π = {π : ∃a, b ∈ [0, 1] s.t π(x) = 1(x ∈ [a, b]) ∀x ∈ X}. Then without the local generalization
assumption, any algorithm with sublinear queries satisfies limT→∞ supµ,πm E[RT] = 1.

Proof. Part 1: Setup. Consider any algorithm which makes sublinear worst-case queries: then there
exists g : N→ N where supµ,πm |QT | ≤ g(T) and g(T) ∈ o(T). Define f(T) :=

√
(g(T) + 1)T ;

by Lemma A.1, g(T) ∈ o(f(T)) and f(T) ∈ o(T). Divide X into f(T) equally sized sections
X1, . . . , Xf(T) in the exactly the same way as in Section 4.2; see also Figure 2. Assume that each xt

is in exactly one section: this assumption holds with probability 1, so it does not affect the regret.

We use the probabilistic method: sample a segment jm ∈ [f(T)] uniformly at random, define πm by
πm(x) = 1(x ∈ Xjm), and define µ by µ(x, y) = 1(y = πm(x)). In words, the mentor takes action
1 iff the input is in section jm, and the agent receives payoff 1 if its action matches the mentor’s and
zero otherwise. Since any choice of jm defines a valid µ and πm, we have

sup
µ,πm

E
x,y

[RT (x,y, µ, π
m)] ≥ E

jm
E
x,y

[RT (x,y, µ, π
m)]

Let J¬Q = {j ∈ [f(T)] : xt ̸∈ Xj ∀t ∈ QT } be the set of sections which are never queried. Let
j1, . . . , jk be the sequence of sections queried by the agent: then k ≤ |QT | ≤ g(T).

Part 2: The agent is unlikely to determine jm. By the chain rule of probability,

Pr[jm ∈ J¬Q] = Pr
[
ji ̸= jm ∀i

]
=

k∏
i=1

Pr
[
ji ̸= jm | jr ̸= jm ∀r < i

]
Now fix i and assume jr ̸= jm ∀r < i. Queries in sections other than jm provide no information
about the value of jm, so jm is uniformly distributed across the set of sections not yet queried, i.e.,
{j ∈ [f(T)] : jr ̸= j ∀r < i}. There are at least f(T) − i + 1 such sections, since there are i − 1

prior queries at this point. Thus Pr[ji ̸= jm | jr ̸= jm ∀r < i] ≤ f(T)−i
f(T)−i+1 (the inequality is

because it could also be 0 if ji = jr for some i < r). Therefore

Pr
[
jm ∈ J¬Q

]
≤

k∏
i=1

f(T)− i

f(T)− i+ 1

=
f(T)− 1

f(T)
· f(T)− 2

f(T)− 1
. . .

f(T)− k + 1

f(T)− k + 2
· f(T)− k

f(T)− k + 1

=
f(T)− k

f(T)

≥ 1− g(T)

f(T)

Part 3: If the agent fails to determine jm, it is likely to make at least one mistake. For each
j ∈ J¬Q, let Vj = {t ∈ [T] : xt ∈ Xj} be the set of time steps with inputs in section j. By

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

Lemma A.3, Pr[|Vjm | = 0] ≤ exp
(

T
16f(T)

)
. Then by the union bound, Pr[jm ∈ J¬Q and |Vjm | >

0] ≥ 1− g(T)
f(T) − exp

(−T
16f(T)

)
. For the rest of Part 3, assume jm ∈ J¬Q and |Vjm | > 0.

Since jm ∈ J¬Q, the agent has no information about jm other than that it is in J¬Q. This means that
for all j ∈ J¬Q and t ∈ Vj , jm is conditionally (under the condition of jm ∈ J¬Q) independent of
yt. We proceed by case analysis.

Case 1: For all j ∈ J¬Q, t ∈ Vj , we have yt = 0. In particular, this holds for j = jm, and we know
there exists at least one t ∈ Vjm since |Vjm | > 0. Then yt ̸= πm(xt), so µ(xt, yt) = 0 and thus

Pr
[∏T

r=1 µ(xr, yr) = 0
∣∣∣ jm ∈ J¬Q and |Vjm | > 0

]
= 1.

Case 2: There exists j ∈ J¬Q, t ∈ Vj with yt = 1. Then µ(xt, yt) = 0 unless j = jm, so

Pr

[
T∏

r=1

µ(xr, yr) = 0
∣∣∣ jm ∈ J¬Q and |Vjm | > 0

]
≥ Pr

[
µ(xt, yt) = 0 | jm ∈ J¬Q and |Vjm | > 0

]
= Pr

[
j ̸= jm | jm ∈ J¬Q and |Vjm | > 0

]
Conditioned on jm ∈ J¬Q, jm is uniformly distributed across J¬Q, so

Pr

[
T∏

r=1

µ(xr, yr) = 0
∣∣∣ jm ∈ J¬Q and |Vjm | > 0

]
≥ 1− 1

|J¬Q|
≥ 1− 1

f(T)− g(T)

Combining Case 1 and Case 2, we get the overall bound of

Pr

[
T∏

t=1

µ(xt, yt) = 0
∣∣∣ jm ∈ J¬Q and |Vjm | > 0

]
≥ 1− 1

f(T)− g(T)

and thus

Pr

[
T∏

t=1

µ(xt, yt) = 0

]
≥ Pr

[
T∏

t=1

µ(xt, yt) = 0 and jm ∈ J¬Q and |Vjm | > 0

]

= Pr

[
T∏

t=1

µ(xt, yt) = 0
∣∣∣ jm ∈ J¬Q and |Vjm | > 0

]
· Pr

[
jm ∈ J¬Q and |Vjm | > 0

]
≥
(
1− 1

f(T)− g(T)

)(
1− g(T)

f(T)
− exp

(
−T

16f(T)

))
For brevity, let α(T) denote this final bound. Since g(T) ∈ o(f(T)) and f(T) ∈ o(T), we have

lim
T→∞

α(T) = lim
T→∞

(
1− 1

f(T)− g(T)

)(
1− g(T)

f(T)
− exp

(
−T

16f(T)

))
= (1− 0)(1− 0− 0)

= 1

Part 4: Putting it all together. Since
∏T

t=1 µ(xt, yt) ≤ 1 always, we have

E
jm

E
x,y

[
T∏

t=1

µ(xt, yt)

]
= E

jm
E
x,y

[
T∏

t=1

µ(xt, yt)
∣∣∣ T∏

t=1

µ(xt, yt) = 0

]
· Pr

[
T∏

t=1

µ(xt, yt) = 0

]

+ E
jm

E
x,y

[
T∏

t=1

µ(xt, yt)
∣∣∣ T∏

t=1

µ(xt, yt) ̸= 0

]
· Pr

[
T∏

t=1

µ(xt, yt) ̸= 0

]

≤ 0 · Pr

[
T∏

t=1

µ(xt, yt) = 0

]
+ 1 ·

(
1− Pr

[
T∏

t=1

µ(xt, yt) = 0

])
≤ 1− α(T)

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Since
∏T

t=1 µ
m(xt) = 1 always, we have

sup
µ,πm

E
x,y

[RT (x,y, µ, π
m)] ≥ E

jm
E
x,y

[RT (x,y, µ, π
m)]

= 1− E
jm

E
x,y

[
T∏

t=1

µ(xt, yt)

]
≥ α(T)

Therefore limT→∞ supµ,πm E[RT] ≥ limT→∞ α(T) = 1, as required.

33

	Introduction
	Our model
	Our assumptions
	Standard online learning
	Our results

	Related work
	Model
	Avoiding catastrophe is impossible in general
	Intuition
	Formal definition of construction

	Avoiding catastrophe assuming finite VC or Littlestone dimension
	Intuition behind the algorithm
	Proof sketch

	Conclusion and future work
	Proof of Theorem 4.1
	Proof roadmap
	Proof

	Proof of Theorem 5.2
	Context on lem:russo
	Main proof
	Adaptive adversaries

	Generalizing thm:pos-nd to many actions
	There exist policy classes which are learnable in our setting but not in the standard online model
	Intuition behind the algorithm
	Notation for the proof
	Proof roadmap
	Proof

	Other proofs

